
Instructions for using CASA simulator for the ngVLA

C.L. Carilli, E. Greisen, K. Nyland, & R. Indebetouw (NRAO)
original: November 2, 2016; revised: Sepetmber 2017

1 Introduction

Following are simple instructions as to the use of idealized configuration files
in generating mock observations using CASA.

The idealized .cfg table is a simple ascii file with x,y,z positions, plus
antenna diameter and name. The x,y,z positions are in meters relative to
Earth-center, using standard coordinates defined in the FITS WCS1.

In the latest version of CASA (5.1), SIMOBSERVE should use the an-
tenna diameter in the .cfg file in both calculating the visibilities in the .ms,
and in the CLEAN PB correction step. The NGVLA is now in the Obser-
vatory table in CASA.

2 SIMOBSERVE

The task SIMOBSERVE in CASA takes a FITS image model as input, plus
the .cfg file, and generates a measurement set.

FITS model: The FITS image can be a spectral cube or a single image,
and simobserve will generate a measurement set with the correct number
of spectral channels given in the header of the input FITS image. The
frequency of the mock observations is read from the FITS header. The flux
density unit in the FITS image needs to be Jy/pixel.

The pixel size needs to be small enough that the outer spacings of the
array are reasonably sampled, otherwise simobserve crashes. This can be
a problem for mock observations of large scale structures at low resolution.
One solution is to resample the FITS image to small pixels, making a really
big image. Make sure to maintain the Jy/pixel scaling in this case (smaller

1see https://fits.gsfc.nasa.gov/fits wcs.html and references therein

1



pixels mean less Jy). A second solution is to remove the outer antennas
from the .cfg file. We include the SWcore configuration in the package to
facilitate low resolution simulations. This configuration includes just the
114 core stations in the SW array, within 2km diameter.

The FITS file also needs to have the the proper coordinate strings, such
as: ”RA—SIN’ ’DEC–SIN’, STOKES, etc...

Following are inputs to SIMOBSERVE. This mock observation used 100s
records, and a total integration time of 1000s centered at transit. We have
removed many of the parameters that could be default (use: ’default simob-
serve’ to begin).

simobserve(project=”TEST”,skymodel=”PBTEST.FITS”,complist=””,
compwidth=”1GHz”,setpointings=False,ptgfile=”pnt.txt”,
integration=”100s”,obsmode=”int”,refdate=”2014/05/21”,
hourangle=”transit”,totaltime=”1000s”,antennalist=”SWcore.cfg”,
outframe=”LSRK”,thermalnoise=””)

The thermalnoise parameter is set to blank, which implies no noise is
added. We do not add noise in this step, since there are many parameters
applicable predominantly to ALMA, which we are not sure how they would
work for the ngVLA (gain gain corrections, atmospheric corrections, etc...).

The channel width and number of channels will be taken from the FITS
header, so ’compwidth’ is ignored.

The setpointings=False and the pnt.txt is required to ensure that CASA
does not try to generates its own pointings to cover the field (except, of
course, if you want it to). The pnt.txt file has the format:

#Epoch RA DEC TIME(optional)
J2000 16h30m00.0 024d00m00.0
Simobserve will create a visibility measurement set with no noise, sam-

pled by the array with the given model as the image. The visibilities will be
in Janskys.

Adding noise Thermal noise can be added to each visibility based on
the integration time and band or channel width. The commands are:

• sm.openfromms(”test.ms”)

• sm.setnoise(mode=”simplenoise”,simplenoise=”1Jy”)

• sm.corrupt()

• sm.done()

To derive the simplenoise scaling, we have followed an empirical process:

2



• 1. Calculate the expected thermal noise for your final naturally weighted
image. The noise performance values as a function of frequency can
be found in Table 1 of ngVLA memo 17.

• 2. Start simobserve with a FITS model that has zero flux but otherwise
same inputs (integration time) as final simulation.

• 3. Add unit noise per visibility to the resulting zero.ms (simplenoise=”1Jy”).

• 4. Make a naturally weighted image and derive the rms noise in this
test image using the viewer or whatever.

• 5. Calculate the scale factor needed for ’simplenoise’ to get to your
expected thermal noise (ie. desired noise/test noise)

• 6. Return to the real mock measurement set for the simulation you
are performing, and add noise as per step 5 scaling.

Note that the sm.corrupt process corrupts the visibilities, so you should
save the original .ms from simobserve before proceeding.

This should yeild a model measurement set that results in a CLEAN
image with a naturally weighted noise expected for the proposed observation.
However, if there is a bright source in your model that might cause dynamic
range issues, you might want to go back to the test/zero image case and
rerun, starting from simobserve with the zero model, through setnoise with
the scaled simplenoise from step 5, to CLEAN/NA, to check you get the
right noise in the end.

At this point, you have a visibility data set with correct flux densities
for the source, and correct thermal noise. You can then explore eg. what
Briggs weighting does to the final image noise and quality.

3


	Introduction
	SIMOBSERVE

