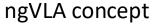
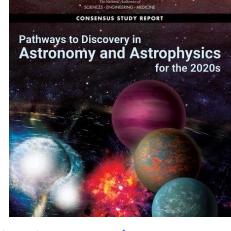


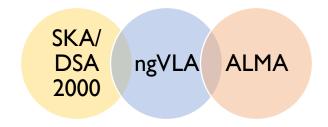
ngVLA Project Update

Eric J. Murphy – Project Scientist




Big Picture - Overview

The ngVLA will be a single interferometric array that replaces the NSF Jansky Very Large Array and the NSF Very Long Baseline Array.


Astro2020 identified the ngVLA as a high-priority, ground-based large facility whose construction should start this decade.

- Frequency span 1.2 116 GHz
- Resolution span 0.1 milliarcsec 10 arcsec
- 10 x sensitivity of the Jansky VLA and ALMA
- 244 x 18m + 19 x 6m offset Gregorian antennas
 - At fixed locations in the U.S. and Mexico
 - Concentrated in the U.S. Southwest

ngVLA science bridges SKA/ALMA

Square Kilometer Array

Atacama Large
Millimeter/submillimeter Array

ngVLA Key Science Goals (ngVLA memos #19 & 125)

- 1. Unveiling the Formation of Solar System Analogues on Terrestrial Scales
- 2. Probing the Initial Conditions for Planetary Systems and Life with Astrochemistry
- 3. Charting the Assembly, Structure, and Evolution of Galaxies Over Cosmic Time
- 4. Science at the Extremes: Pulsars as Laboratories for Fundamental Physics
- 5. Understanding the Formation and Evolution of Stellar and Supermassive Black holes in the Era of Multi-Messenger Astronomy

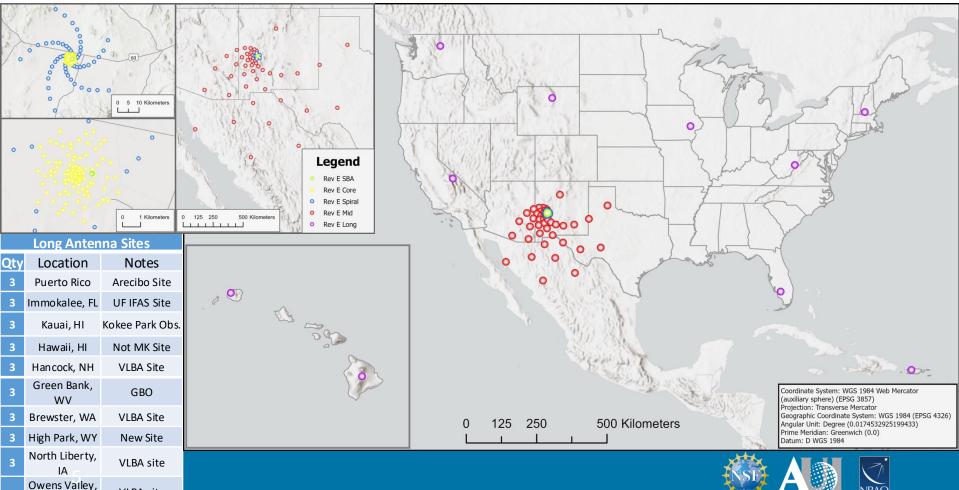
Science requirements

Technical concept

Technical Concept

Key design choice: Antennas in fixed locations

- > Year-round access to all angular resolutions
- > PI-driven facility providing science subarrays
- Frequency Range: 1.2 116 GHz
- Main Array: 244 x 18m offset Gregorian Antennas
 - Core: 114 antennas; $B_{max} = 4.3 \text{ km}$
 - **Spiral**: 54 antennas; B_{max} = 39 km
 - Mid: 46 antennas in NM, AZ, TX, MX; B_{max}=1070 km
 - **Long**: 30 antennas across continent; B_{max}= 8860 km
- Short Baseline Array: 19 x 6m offset Greg. Antennas
 - Use $4 \times 18 \text{m}$ in **Total Power mode** to fill (u,v) hole

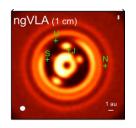

Band	Freq. Range
#	(GHz)
1	1.2 - 3.5
2	3.5 - 12.3
3	12.3 - 20.5
4	20.5 - 34
5	30.5 - 50.5
6	70 - 116

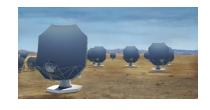
Correlator /	Requirement
Beamformer	(design)
digital efficiency	>95%
narrowest channel	<1 kHz
total # channels	>240,000
sub-band width	<250MHz (218.75)
total bandwidth	>14GHz/pol (20)
# formed beams	10

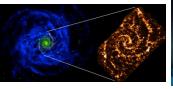
Distribution of Antennas

VLBA site

CA




Big Picture - Timeline



2021

2031

ngVLA Submission to Astro2020

2019

Prototype Delivered to VLA Site

2024

ngVLA Construction →

Initiate ngVLA Early Science (> VLA capabilities)

Complete ngVLA Proposal to NSF/MREFC

Complete NSF/MREFC FDR

2028

MREFC Design Candidate!

Achieve Full Science Operations

2037

Astro2020 Recommendation Published

ngVLA Community

Proactively engaged the worldwide scientific and technical communities since 2015

 Science Advisory Council offers expertise, guidance and feedback, and leads Science Working Groups with 300+ subscribers

Technical Advisory Council offers expertise, guidance and feedback

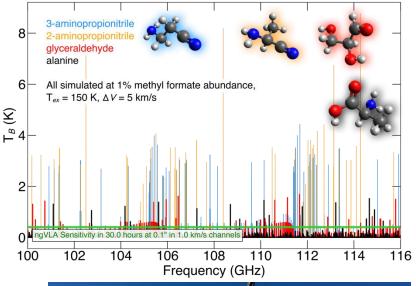
on engineering and computing topics

• Sought use cases, Science Book chapters, white papers

- Supported 50+ Community Studies
- Showcased 50+ scientific papers in NRAO eNews
- Supported 30+ scientific and technical conferences
- ngVLA mentioned in 1200+ community publications

Recent Highlights

- Completed NSF-run CDR September 3 6, 2024
 - Panel recommended project move to PDR
 - · Panel recommended project Design be fully funded
- ngVLA Science Advisory Council <u>updated Key Science Goals</u>
 - Document also identifies expected data products and computing needs
- Strong recommendation in a Kavli-IAU report
- Supported a Focus Meeting at IAU GA in Cape Town
 - Continue to build international community
- Held 2024 ngVLA Science Meeting in MX
 - Morelia; broad range of science using ~100+km baselines
- Prototype Antenna Progress
 - Nearly completed antenna construction.



2025 Scope & Plans

- Continue with System Design Work
 - Focus on being PDR-ready in FY26
 - Secure International Partnerships
 - Identify Possible Science and Data Center Locations
- Prepare for Prototype Antenna Handover
 - Scientific testing in this spring
- Continue work for possible 2nd (Long) Prototype
 - To be sited in at GBO
- Start to organize 2025 ngVLA Science Meeting
 - Astrochemistry in Portland ME in October

