DSA-2000 Overview/Status

Gregg Hallinan, Caltech

Gregg Hallinan (PI)

Vikram Ravi (Co-PI)

Fabian Walter (Project Scientist)

Katie Jameson (Project Manager)

Francois Kapp (Project Engineer)

A world-leading radio survey telescope and multimessenger discovery engine

- ~2000 x 5m dishes (19 x 15 km)
- Spring Valley, Nevada
- Frequency: 0.7 2 GHz band
- Spatial resolution: 3.3 arcseconds
- Highly optimized for surveys
- First light: 2027
- Key surveys: 2028 2033

The 2020s is the Decade of Surveys

Spring Valley, NV Google Earth Landsat / Copernicus, Data SIO, NOAA

Timeline

Spring Valley, Nevada

2023: submitted ap 2024-2025: Key sur 2026: Completion o

Detailed Construction Planning

Detailed Construction Planning

Detailed Construction Planning

D2V-5000

Key Technology: Uncooled Antenna/Receiver

D2V-5000

Key Technology: A Radio Camera

DSV-5000

- No need for visibility-based deconvolution
- Enables a deterministic stream processing pipeline that creates images

Key Technology: A Radio Camera

Radio Camera Frontend

2000x ADCs

2000x iWave ZU11 System-on-module

Data throughput ~200 Tb/s

DSV-5000

Radio Camera Processor

528 servers 4960 RTX 4000 GPUs 27,000 CPU cores 500 TB RAM

Data throughput ~43 Tb/s

5-Year Survey

Public Archive: IPAC

31,000 deg² to 500 nJy (AB: 24.7)

- >1 billion radio sources (IQUV)
- ~few million galaxies in HI
- ~50,000 FRBs and 20,000 pulsars
- ~10⁶ 'slow' transients

No proprietary period

Products include:

- Continuum data (10 sub-bands)
- Spectral image cubes (HI, OH)
- Polarization (IQUV)
- Photometry
- Spectra and light curve fits

DSA-2000 Key Science

Multi-Messenger Astronomy

Our Cosmic History

The Dynamic Radio Sky

The Dark Sector and Strong Gravity

DSA-2000 Key Science Goals	Astro 2020 Science Panel Questions	
Multi-Messenger Astronomy	Q1. What are the mass and spin distributions of neutron stars and stellar mass black holes?	
KSG1: Characterizing the nanohertz gravitational-wave universe via pulsar timing.	Q2. What powers the diversity of explosive phenomena across the electromagnetic spectrum?	T
Q4, Q8, Q9 KSG2: Discovering the counterparts to compact binary coalescences detected in gravitational waves. Q1, Q2, Q3, Q8, Q22	Q3. What do some compact objects eject material at nearly-light- speed jets, and what is that material made of?	and New Phys
	Q4. What seeds supermassive black holes and how to they grow?	
	Q5. What set the hot Big Bang in motion?	
	Q6. What are the properties of dark matter and the dark sector?	
Our Cosmic History	Q7. What physics drives the cosmic expansion and the large-scale	ics
KSG3: Neutral hydrogen census through half of the Universe's age. Q10, Q12, Q17	evolution of the universe?	
	Q8. How will measurements of gravitational waves reshape our cosmological view?	
KSG4: The cosmic-ray lifecycle: production, propagation and cooling amidst galactic and	Q9. How did the intergalactic medium and the first sources of radiation evolve from cosmic dawn through the epoch of reionization?	
intergalactic magnetic fields Q3, Q4, Q9, Q11	Q10. How do gas, metals, and dust flow into, through, and out of galaxies?	Cosmic
The Dynamic Radio Sky	Q11. How do supermassive black holes form and how is their growth coupled to the evolution of their host galaxies?	Ecos
KSG5: Determining the distribution of matter in the circum- and inter- galactic medium with FRBs. Q2, Q10	Q12. How do the histories of galaxies and their dark matter halos shape their observable properties?	ystems
	Q13. What is the range of planetary system architectures, and is the configuration of the solar system common?	and a
KSG6: A new window on binary- driven mass loss and relativistic jets in stellar explosions. Q2, Q3, Q22	Q14. What are the properties of individual planets, and which processes lead to planetary diversity?	
	Q15. How do habitable environments arise and evolve within the context of their planetary systems?	
The Dark Sector and Strong Gravity	Q16. How can signs of habitable life be identified and interpreted in the context of their planetary environments?	N
KSG7: Physical Characteristics / Fundamental Properties of Dark Matter and Dark Energy. Q6, Q7, Q12	Q17. How do star-forming structures arise from, and interact with, the diffuse ISM?	/orlds
	Q18. What regulates the structures and motions within molecular clouds?	and Su
KSG8: A Galactic census of radio pulsars to test theories of gravity, bulk nuclear matter, and the endpoints of stellar evolution. Q1, Q2	Q19. How does gas flow from parsec scales down to protostars and disks?	ns in C
	Q20. Is planet formation fast or slow?	ont
	Q21. What are the most extreme stars and stellar populations?	ext
Ancillary Science Q3, Q7, Q9, Q12, Q14, Q15, Q16, Q21, Q23, Q24	Q22. How does multiplicity affect the way a star lives and dies?	
	Q23. What would stars look like if we view them like we do the Sun?	
	Q24. How do the Sun and other stars create space weather?	

March 2023: Science Workshop

SCIENTIFIC FRONTIERS AND SYNERGIES FOR THE DSA-2000 RADIO CAMERA

March 20 - 22, 2023 - Pasadena, California

#2023RadioCamera

<u>https://www.deepsynoptic.org/2023-conference</u> ~70 contributions to the DSA-2000 Community Science Reference Document

TWENTY YEARS ASTRONOMY WITH THE 48-INCH SCHMIDT TELESCOPE ON PALOMAR MOUNTAIN

R. Minkowski

The main motive for the design and construction of the 200-inch telescope on Palomar Mountain was the desire to extend extragalactic research to fainter galaxies and to larger distances. The need for a companion instrument that could survey the sky to as faint a magnitude as possible was obvious.

- DSA-2000 will be a powerful radio survey telescope and multi-messenger engine
- 5 year surveys: 2028-2033
- Key science tied to four pillars Multi-messenger astronomy, our cosmic history, the dynamic radio sky, the dark sector and strong gravity
- A finder scope for ngVLA
- All data will be publicly available with no proprietary period

