

ngVLA Local Oscillator Reference and Timing: Generation and Distribution Requirements

020.35.00.00.00-0001 REQ Status: **RELEASED**

PREPARED BY	ORGANIZATION	DATE
B. Shillue	Central Development Laboratory, NRAO	2024-06-01

APPROVALS	ORGANIZATION	SIGNATURES
B. Shillue, Central Electronics IPT	ngVLA, NRAO	<u>B. Shillue</u> B. Shillue (Aug 22, 2024 15:59 EDT)
P. Kotzé, Systems Engineer	ngVLA, NRAO	Pieter Kotzé Pieter Kotzé (Aug 22, 2024 14:18 MDT)
R. Selina, Project Engineer	ngVLA, NRAO	Rob Selina (Aug 22, 2024 14:27 MDT)
W. Esterhuyse, Project Manager	ngVLA, NRAO	NAA

RELEASED BY	ORGANIZATION	SIGNATURE
W. Esterhuyse, Project Manager	ngVLA, NRAO	NALA

Change Record

Version	Date	Author	Affected Section(s)	Reason
01	2018-05-30	B. Shillue	All	First Draft
02	2018-09-30	B. Shillue	All	Incorporation of Long Baseline Array Requirements Incorporate reviewer edits
03	2018-11-16	B. Shillue	All	Minor edits after Internal Review
04	2019-04-23	B. Shillue	3.4,6,5	Small changes to sections 3.4.6 and 5, other minor edits
05	2019-06-04	B. Shillue	3.4.2, 3.4.3, 4.2.2, 4.2.3, 4.3.1	Changed detail of reqts -0260, -0300 and added -0251
А	2019-07-26	A. Lear	All	Incorporated minor edits from R. Selina & M. McKinnon; prepared PDF for signatures & release
A.01	2022-04-14	B. Shillue	All	Initial Draft for internal review.
A.02	2022-05-27	A. Lear	All	Formatting, copy edits.
В	2022-05-30	A. Lear	All	Prepare PDF for signatures and release.
B.I	2024-01-24	B. Shillue	3.4	Content added and sections expanded as 3.41—3.4.3
С	2024-02-28	M. Archuleta	All	Removed requirements LRT5350-5390 in Sections 7.2, 11.2 per B. Shillue (these have been moved to/accounted for in ATF requirements document – 020.30.35.00.00- 0004-REQ). Minor edits and formatting; prepared for release.
D	2024-06-01	B. Shillue	All	Consistent use of fsec. Update LRT0330, LRT0400. Elaborate LRT4200, LRT4210, LRT4220.

Table of Contents

I I	Introduction	. 5
1.1	Purpose	5
1.2	Scope	5
2	Related Documents and Drawings	. 6
2.1	Applicable Documents	
2.2	Applicable Interface Control Documents	
2.3	Reference Documents	
3	Overview of Subsystem Requirements	
3.1	Document Outline	
3.2	Subsystem General Description	
3.3	Subsystem Boundary and External Interfaces	
3.4	Key Requirements Summary	
3.4.1	RTG Subsystem Key Requirements	
3.4.2	Frequency Transfer Key Perfomance Requirements	
3.4.3	Key Requirements of Time Transfer	
4	Requirements Management	
4.1	Requirements Definitions	
4.2	Requirements Flow Down	
4.3	Verb Convention	
5	Assumptions	15
6	Environmental Conditions	16
6.1	Equipment Location	
6.2	Survival Conditions	
6.3	Transportation conditions	
6.4	Storage Conditions	
6.5	Site Elevation	
6.6	Environmental Protection Requirements	
6.6.I	Seismic	
6.6.2	Lightning, Dust, Fauna, Rain/Water Infiltration and Corrosion Protection	.19
6.7	Precision Operating Conditions (POC)	
6.7.I	Central Electronics Building	. 19
6.7.2	Repeater Stations	.20
6.7.3	Antenna Stations	.20
6.8	Normal Operating Conditions (NOC)	.20
6.8.I	Central Electronics Building	.20
6.8.2	Repeater Stations	.21
6.8.3	Antenna Stations	.21
6.9	Limits to Operating Conditions (LOC)	21
6.10	Standby Conditions	.21
7	Subsystem Requirements	22
7.1	General	
7.2	Frequency	.24
7.3	Phase	
7.3.I	Phase Noise and Phase Drift Budget	.27
7.4	Timing	.28

0	<i>Title</i> : ngVLA LO Reference and Timing: Generation and Distribution Requirements	Owner: B. Shillue	Date: 2024-06-01
ngvla	NRAO Doc. #: 020.35.00.00.00-0001 REC)	Version: D

7.4.I	Central Building	29
7.4.2	Antenna Stations	29
7.4.3	Timing Performance Budget	
7.5	Modes	
7.6	Spurious/RFI	
7.6.I	Signal Path Spurious	32
7.6.2	Spurious RFI Emission – Discussion	32
7.6.3	Central Building	
7.6.4	Spurious RFI Emission – Repeater Stations	34
7.6.5	Spurious RFI Emission – Antenna Stations	34
7.7	Monitor and Control	35
7.8	Lifecycle	
7.9	Configuration	
7.10	EMC/Immunity	
7.11	Reliability, Availability, and Maintainability	
7.12	Design Requirements	
7.12.1		
7.12.2	2 Power and Ground	40
7.12.3	3 Electrical Wiring, Cables, Connectors	41
7.12.4	4 Materials, Lighting, and Mechanical	42
8	Safety	43
8.1	Safety Requirements	43
0		
9	Interface Requirements	45
9 9.1	Interface Requirements Interface to PSU	
-		45
9.1	Interface to PSU	45 45
9.1 9.2	Interface to PSU Interface to BMR	45 45 46
9.1 9.2 9.3	Interface to PSU Interface to BMR Interface to EEC	45 45 46 47
9.1 9.2 9.3 9.4	Interface to PSU Interface to BMR Interface to EEC Interface to MCL/HIL	45 45 46 47 47
9.1 9.2 9.3 9.4 9.5	Interface to PSU Interface to BMR Interface to EEC Interface to MCL/HIL Interface to NSB	45 45 46 47 47 47
9.1 9.2 9.3 9.4 9.5 9.6	Interface to PSU Interface to BMR Interface to EEC Interface to MCL/HIL Interface to NSB Interface to MCL (RTG)	45 45 46 47 47 48 49
9.1 9.2 9.3 9.4 9.5 9.6 9.7	Interface to PSU Interface to BMR Interface to EEC Interface to MCL/HIL Interface to NSB Interface to NSB Interface to MCL (RTG) Interface to FIB Interface to CSP Interface to ATF	45 46 47 47 47 48 49 49 49 49 49
9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8	Interface to PSU Interface to BMR Interface to EEC Interface to MCL/HIL Interface to NSB Interface to NSB Interface to FIB Interface to FIB	45 46 47 47 47 48 49 49 49 49 49
9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9	Interface to PSU Interface to BMR Interface to EEC Interface to MCL/HIL Interface to NSB Interface to NSB Interface to MCL (RTG) Interface to FIB Interface to CSP Interface to ATF	45 45 46 47 47 47 48 49 49 49 49 49 49 49 45
9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 9.10	Interface to PSU Interface to BMR Interface to EEC Interface to MCL/HIL Interface to NSB Interface to NSB Interface to MCL (RTG) Interface to FIB Interface to FIB Interface to CSP Interface to ATF Interface to ATF	45 46 47 47 47 48 49 49 49 49 49 49 49 49 45 45 45 45 46 46 47 47 47 47 47 47 47 47 47 45 46 47 47 47 45 47 47 47 45 45 47 47 47 49
9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 9.10 9.11	Interface to PSU Interface to BMR Interface to EEC Interface to MCL/HIL Interface to NSB Interface to NSB Interface to MCL (RTG) Interface to FIB Interface to FIB Interface to CSP Interface to ATF Interface between RTG-RTD Interface between RTG-RTD	
9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 9.10 9.11 9.12	Interface to PSU Interface to BMR Interface to EEC Interface to MCL/HIL Interface to NSB Interface to NSB Interface to FIB Interface to FIB Interface to FIB Interface to CSP Interface to ATF Interface between RTG-RTD Interface between RTG-AFD Interface between RTD-AFD Interface between RTD-WVR	
9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 9.10 9.11 9.12 10	Interface to PSU Interface to BMR Interface to BEC Interface to MCL/HIL Interface to MSB Interface to NSB Interface to MCL (RTG) Interface to FIB Interface to FIB Interface to CSP Interface to ATF Interface between RTG-RTD Interface between RTG-RTD Interface between RTD-AFD Interface between RTD-WVR	
9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.7 9.10 9.10 9.11 9.12 10	Interface to PSU Interface to BMR Interface to EEC Interface to MCL/HIL Interface to NSB Interface to NSB Interface to MCL (RTG) Interface to FIB Interface to FIB Interface to CSP Interface to ATF Interface between RTG-RTD Interface between RTG-RTD Interface between RTD-AFD Interface between RTD-AFD Interface between RTD-WVR Technical Metrics Technical Performance Measures	
9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.7 9.10 9.11 9.12 10 10.1 11	Interface to PSU Interface to BMR Interface to EEC Interface to MCL/HIL Interface to NSB Interface to NSB Interface to MCL (RTG) Interface to FIB Interface to FIB Interface to CSP Interface to ATF Interface between RTG-RTD Interface between RTG-AFD Interface between RTD-AFD Interface between RTD-WVR Technical Metrics Technical Performance Measures	45 46 47 47 47 48 49 49 49 50 51 51 51 51 51 51 52 52
9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.7 9.10 9.11 9.12 10 10.1 11.1 11.1	Interface to PSU Interface to BMR Interface to EEC Interface to MCL/HIL Interface to NSB Interface to NSB Interface to MCL (RTG) Interface to FIB Interface to FIB Interface to CSP Interface to ATF Interface between RTG-RTD Interface between RTG-RTD Interface between RTD-AFD. Interface between RTD-WVR Technical Metrics Technical Performance Measures Verification Environmental Testing Subsystem Verification Table	
9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.7 9.8 9.9 9.10 9.12 10 10.1 11 11.1	Interface to PSU Interface to BMR Interface to EEC Interface to MCL/HIL Interface to NSB Interface to NSB Interface to MCL (RTG) Interface to FIB Interface to FIB Interface to CSP Interface to ATF Interface between RTG-RTD Interface between RTG-RTD Interface between RTD-AFD Interface between RTD-AFD Interface between RTD-WVR Technical Metrics Technical Performance Measures Verification Environmental Testing	

I Introduction

I.I Purpose

This document presents the complete set of Level 2 subsystem requirements that should guide the design and development of the LO Reference and Timing Generation (RTG) and Distribution (RTD) Subsystem. Requirements described in this document are derived from applicable ngVLA System Requirements and System-Level Specification documents as listed in the Applicable Documents table. The overall requirements hierarchy and management strategy are outlined in [AD01] and [AD02].

The content of these requirements is at the subsystem level, conforming to the system architecture [AD06], but aims to be implementation agnostic within the subsystem boundaries. Some assumptions about the subsystem may be given, but only to the degree necessary to unambiguously define the subsystem requirements.

I.2 Scope

The scope of this document is the LO Reference and Timing Generation (RTG) and Distribution (RTD) Subsystem, as delivered for ngVLA integration. This includes the following:

- Assumptions upon which the requirements are based
- Definition of environmental requirements to be used as applicable conditions in the definition of the requirements
- A complete set of requirements for the subsystem needed for the development, operation and maintenance of the subsystem, including interface requirements that are derived from the applicable list of ICDs.
- Nonfunctional requirements unique to this subsystem (e.g., safety, quality, reliability, maintainability).
- List of Interface Requirements (I/F) and link to Interface Control Documents necessary to integrate with other Systems and Subsystems.
- Numbering of all requirement and establishment of traceability to higher level requirements.
- Technical Performance Measures (TPMs) at the subsystem level, which support the Measures of Performance (MOPs) at the system level.
- Requirements specified for the complete lifecycle of the subsystem, including any requirements that are applicable for operations, maintenance, decommissioning, and disposal.

2 Related Documents and Drawings

2.1 Applicable Documents

The following documents apply to this Requirements Specification to the extent specified. In the event of a conflict between the documents referenced herein and the content of this Requirements Specification, the content of the *highest*-level specification (in the requirements flow-down) shall be considered the superseding requirement for design elaboration and verification.

Ref. No.	Document Title	Rev./Doc. No.
AD01	ngVLA Systems Engineering Management Plan	020.10.00.00.00-0001 PLA
AD02	ngVLA Requirements Management Plan	020.10.15.00.00-0001 PLA
AD03	ngVLA System Requirements	020.10.15.10.00-0003 REQ
AD04	LI System Environmental Specifications	020.10.15.10.00-0001 SPE
AD05	LI System EMI/RFI Requirements	020.10.15.10.00-0002 REQ
AD06	System-Level Architecture Model	020.10.20.00.00-0002 DWG
AD07	LI Safety Specification	020.80.00.00.00-0001 REQ
AD08	LI Security Specification	020.80.00.00.00-0003 REQ
AD09	ngVLA System Electronics Specifications	020.10.15.10.00-0008 REQ
AD10	Calibration Requirements	020.22.00.00.00-0001 REQ
ADII	System Technical Budgets	020.10.25.00.00-0002 DSN

2.2 Applicable Interface Control Documents

Ref. No.	Document Title	Rev./Doc. No.
AD20	Interface Control Document Between: Antenna Electronics DC Power Supply (PSU) and Antenna Electronics Subsystem: section on LO Reference and Timing and Distribution (RTD) Subsystem (interface 0058)	020.10.40.05.00-0006
AD21	Interface Control Document Between: Antenna Electronics Bins, Modules, and Racks (BMR) and Antenna Electronics Subsystem: section on LO Reference and Timing and Distribution (RTD) Subsystem (interface 0064)	020.10.40.05.00-0040
AD22	Interface Control Document Between: LO Reference and Timing and Distribution (RTD) Subsystem and Antenna Electronics Environmental Control System (EEC) Subsystem	020.10.40.05.00-0069
AD23	Interface Control Document Between: Monitor and Control Hardware Interface Layer (HIL)(interface 0077)/Monitor and Control Subsystem (MCL) (interface 0107) and LO Reference and Timing and Distribution (RTD) Subsystem	020.10.40.05.00-0077
AD24	Interface Control Document Between Computing/CSP subsystems : section on LO Reference and Timing Generation (RTG) and Distribution (RTD) Subsystems (interface 0099, 0100) and ngVLA Site Buildings (NSB) subsystem	020.10.40.05.00-0095

Title : ngVLA LO Reference and Timing: Generation and Distribution	Owner: B. Shillue	Date: 2024-06-01
Requirements		
NRAO Doc. #: 020.35.00.00.00-0001 REC	2	Version: D

Ref. No.	Document Title	Rev./Doc. No.
AD25	Interface Control Document Between Monitor and Control System (MCL) and LO Reference and Timing Generation (RTG)	020.10.40.05.00-0106
AD26	Interface Control Document Between: Central Fiber Infrastructure (FIB) and LO Reference and Timing Distribution (RTD)	020.10.40.05.00-0120
AD27	Interface Control Document Between: Digital Backend (DBE) and Antenna Time and Frequency (ATF)	020.10.40.05.00-0152
AD28	Interface Control Document Between: Central Signal Processing (CSP) and LO Reference and Timing Generation (RTG)	020.10.40.05.00-0123
AD29	Interface Control Document Between: LO Reference and Timing – Distribution (RTD) <i>and</i> LO Reference and Timing – Generation (RTG)	020.10.40.05.00-0124
AD30	Interface Control Document Between: LO Reference and Timing – Distribution (RTD) <i>and</i> Antenna Time and Frequency (ATF)	020.10.40.05.00-0125
AD31	Interface Control Document Between: LO Reference and Timing – Generation (RTG) <i>and</i> Hardware Interface Layer (HIL)	020.10.40.05.00-0129
AD32	Interface Control Document Between: LO Reference and Timing – Generation (RTD) <i>and</i> Antenna Fiber Optic System (AFD)	020.10.40.05.00-0153
AD33	Interface Control Document Between: LO Reference and Timing – Generation (RTD) <i>and</i> Water Vapor Radiometer (WVR)	020.10.40.05.00-0128

2.3 Reference Documents

The following documents are referenced within this text or provide supporting context:

Ref. No.	Document Title	Rev./Doc. No.
RD01	Science Requirements	020.10.15.05.00-0001 REQ
RD02	ANSI Z136 Standards for Implementing a Safe Laser	ANSI Z136.1 through .9
	Program	
RD03	Safety of Laser Products – Part 1: Equipment Classification	IEC 60825-1:2014
	and Requirements	
RD04	R. Selina, B. Shillue, O. Ojeda, M. Schiller, "Timing	ngVLA Electronic Memo
	Requirements & Considerations"	#15, July 2023
RD05	Configuration: Reference Design Rev D Description	ngVLA Memo No. 92

3 Overview of Subsystem Requirements

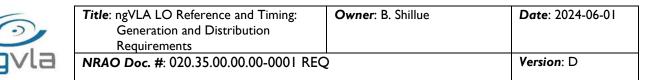
3.1 Document Outline

This document presents the technical requirements for the LO Reference and Timing Generation (RTG) and Distribution (RTD) Subsystem. These parameters determine the overall performance of the subsystem and the functional requirements necessary to enable its operation and maintenance.

The Level 2 Subsystem Requirements, along with detailed explanatory notes, are found in Section 7. The notes contain elaborations regarding the meaning, intent, and scope of the requirements. These notes form an important part of the definition of the requirement and should guide the verification procedures.

In many cases, the notes contain an explanation or an analysis of how the numeric values of requirements were derived. Where numbers have a degree of ambiguity or are insufficiently substantiated, this is also documented in the notes. In this way, the trade-space available is apparent to scientists and engineers who will guide the evolution of the ngVLA concept.

In certain cases, parameters may be simply noted with a TBD or TBC value. The goal in such cases is to identify parameters that will require definition in future releases of these requirements as the associated technical issues are understood.


Section 10 identifies performance metrics that will be monitored throughout the conceptual design phase. These are metrics to assist in the trade-off analysis of various concepts, should tensions be identified between requirements.

3.2 Subsystem General Description

The LO Reference and Timing Generation (RTG) and Distribution (RTD) Subsystem compromises a set of modules that perform a function of hardware timekeeping: generation and routing of an electronic signal, pulse, or digital rising or falling edge from a common reference input to another module or subsystem. The RTG subsystem is fully located in the ngVLA central electronics building (CEB) (or, for very distant antenna stations – at a secondary central facility). The RTD subsystem takes signal generated and developed by the RTG subsystem and delivers them to the antenna stations by optical fiber. The hardware will include electronic and optical (laser) clocks and sources, amplifiers and splitting distribution systems, optical fiber and modems, amplifiers, frequency multipliers and dividers, and phase lock loops.

3.3 Subsystem Boundary and External Interfaces

Figure 1 and Figure 2 show the RTG and RTD subsystem boundaries, in the context of other systems on the antenna. External systems are shown in boxes with their Configuration Item (CI) number, in accordance with the Product Breakdown Structure (PBS) generated from the system architecture model. The ICD document number corresponding to each interface is displayed above the interconnect, where it exists.

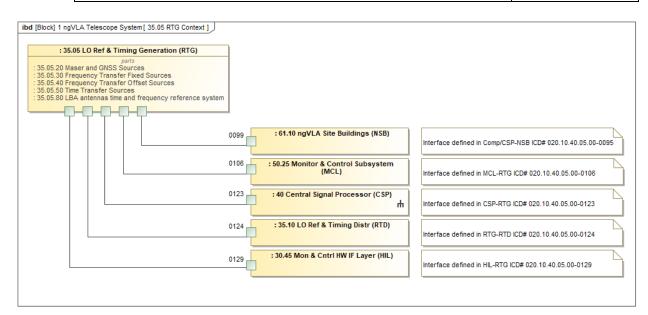


Figure 1: Reference and Timing Generation subsystem product breakdown, interfaces with other antenna subsystems.

Title : ngVLA LO Reference and Timing: Generation and Distribution Requirements	Owner: B. Shillue	Date: 2024-06-01
NRAO Doc. #: 020.35.00.00.00-0001 REC	2	Version: D

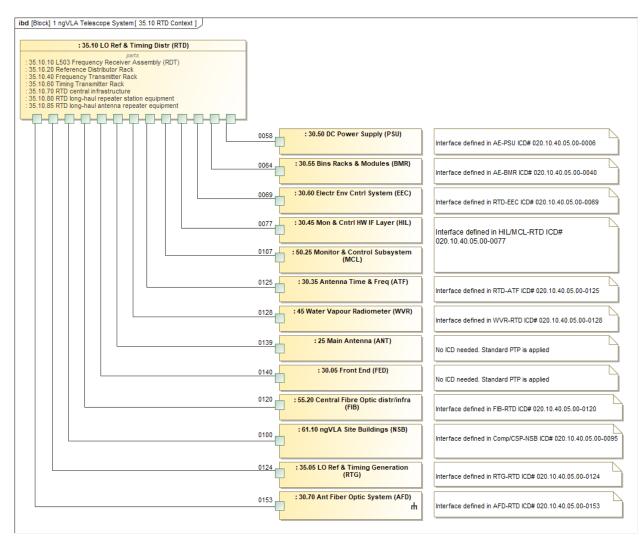


Figure 2: Reference and Timing Distribution subsystem product breakdown, interfaces with other antenna subsystems.

3.4 Key Requirements Summary

This LO Reference and Timing requirements document encompasses all of the requirements for the RTG and RTD subsystems. Here we extract a subset of these requirements that are considered driving requirements for the RTG subsystem design. Further details of these requirements including traceability are included in Section 7.

3.4.1 RTG Subsystem Key Requirements

Table I: Key requirements of the RTG Subsystem

Parameter	Value	Requirement #
LO Phase Noise	< 76 fsec integrated from 1 Hz to maximum IF frequency offset	LRT1240
	Goal < 50 fsec	

<i>Title</i> : ngVLA LO Reference and Timing: Generation and Distribution	Owner: B. Shillue	Date: 2024-06-01
Requirements		
NRAO Doc. #: 020.35.00.00.00-0001 REQ		Version: D

This is the phase noise requirement directly flowed down from Systems Requirements. The phase noise is most important at the antenna local oscillator and digitizer clock. References generated by RTG in the central electronics building must be consistent with meeting the antenna LO phase noise requirement. In most cases the design of a distributed LO or clocking system will utilize phase lock loops or jitter cleaners in the distribution that make parts of the original central source phase noise spectrum irrelevant. So, the interpretation of this requirement is that the RTG source phase noise spectrum must be consistent with meeting the overall system phase noise requirement at the antenna. See also 7.3

LO Phase Drift	< 42 fsec at 300 s (linear term removed)	LRT1250
	< 250 fsec absolute	
may be expected to be inc frequency references be re components that could can	plicable to the entire distributed LO system for ngVLA. Most signification purred in the RTD and ATF subsystems. What is important for the RT easonable compact and well-regulated thermally, with careful attention use spurious thermal phase drifts. Additionally, the central reference ent, in anticipation of the need for far-out ngVLA antennas stations to maser). See also 7.3	G subsystem is that the n to cables and/or source frequency stability
RTD Input Frequency Accuracy from RTG	The frequency reference supplied from RTG to the RTD subsystem must have long term accuracy from T=1 to 1000 seconds T=1 sec AV<=2e-13 T=100 sec AV<=1e-14 T=1e3 sec AV<=2e-15	LRT5220
not sharing a single freque	specifically to the need to maintain adequate coherence when there a ncy source. Thus, the RTG source must have very high coherence. Th en maser or better" stability. (It is estimated that an H-maser will give	e stability set forth here is
RTD Input Frequency Phase Noise from RTG	Phase Noise at offset frequency from 1 Hz to 100 MHz < 50 fsec, goal < 30 fsec rms integrated phase noise	LRT5230
bandwidths at each stage. frequency transfer with su	TG oscillator stability to RTD and thence to ATF subsystem depends This requirement specifies 100 MHz offset frequency in case the ante ch a wide bandwidth. If in the final design the PLL bandwidth is less th fset frequency in this requirement may be derated.	nna PLL locks to the fiber
RTD Timing Stability from RTG	Timing accuracy to RTD shall be within 0.3 nsec. (also see Sec 7.4.3 and Table 12)	LRTI350
requirement stipulates tha RTD, the accuracy should	accuracy of 10 nsec, each part of the timing transfer chain must be we t between the creation of the reference point for the central timing p be less than 1 nsec. As an example, this is equivalent to a 30cm cable be used to meet this requirement.	ulse and the input of the
Timing to CSP	Timing accuracy to CSP shall be within 2 nsec (goal of I nsec)	LRTI300
	(Relative to the central system clock on short timescales and relative to the absolute timing standard over 1-day averaging)	

0
ngvla

<i>Title</i> : ngVLA LO Reference and Timing: Generation and Distribution	Owner: B. Shillue	Date: 2024-06-01
Requirements		
NRAO Doc. #: 020.35.00.00.00-0001 REQ		Version: D

	Note: If data timestamps are tagged at the antenna, this requirement can be relaxed	
At this point in the project it is firmly planned that timestamps will be applied at the telescope. Therefore, the timing accuracy of 2 nsec shall be applicable to the DBE input rather than the central CSP. In fact, the central CSP does not currently envisage the need of any timing input from RTG, but rather can rely on network time. If a future need arises it will be simple to make a 1 PPS available to CSP by a short fiber connection via same method as will be in use for the station timing transfer.		
Availability	The MTBF and MTTR for the RTG and central RTD	LRT2305
Availability	parts are TBD. They should support a system budget to achieve 95% system availability	LK12305
The RTG shall be designed with some combination of hot-spare, hot-swap, redundant and backup power, as needed to meet this requirement.		
Mean Time Between Failure/Mean Time Between Maintenance	The RTG subsystem shall have a minimum MTBM of 3000 hours Here failures are considered in the same category as maintenance, any equipment status that would require a human intervention to address	LRT2310
. .		
Network Time to MCL/HIL	PTP Timing support	LRTI330

Note that the RTG subsystem establishes central time and frequency functions but does not provide tuning, offset frequencies, or switching. Thus, the critical requirements listed above mainly concern with: noise, stability, and accuracy; rather than -- tuning ranges, return-to-phase, and switching times. These latter types of requirements will be more prominent in the RTD and ATF subsystems. 3.4.2 Frequency Transfer Key Perfomance Requirements

This LO Reference and Timing requirements document encompasses all of the requirements for the RTG and RTD subsystems. Here we extract a subset of these requirements that are considered driving requirements for the RTD frequency transfer subsystem design.

Table 2: Key requirements of the RTD Frequency Transfer

Parameter	Value	Summary of Requirement
LO Phase Noise	< 76 fsec integrated from 1 Hz to maximum IF frequency offset	LRT1240
	Goal < 50 fsec	
This is the phase noise requirement directly flowed down from Systems Requirements. The phase noise is most important at the antenna local oscillator and digitizer clock. References provided by RTG in the central electronics building must be consistent with ultimately meeting the antenna LO phase noise requirement. In most cases the design of a distributed LO or clocking system will utilize phase lock loops or jitter cleaners in the distribution that make parts of the original central source phase noise spectrum irrelevant. So, the interpretation of this requirement is:		
	e phase noise spectrum provided as input to RTD frequency transfer meeting the overall system phase noise requirement at the antenna.	subsystem must be consisten

Title : ngVLA LO Reference and Timing: Generation and Distribution Requirements	Owner: B. Shillue	Date : 2024-06-01
NRAO Doc. #: 020.35.00.00.00-0001 REC	2	Version: D

b) The RTD frequency transfer subsystem must transfer the phase noise from the central electronics building to the antenna, over an appropriate portion of the frequency spectrum. For instance, if the output of the RTD frequency transfer subsystem at the antenna is used to lock an antenna local oscillator with a PLL bandwidth of I kHz, then the RTD phase noise spectrum used in verification of this requirement is DC-I kHz. Phase noise above I kHz that is effectively filtered out may be ignored.

LO Phase Drift	< 42 fsec at 300 s (linear term removed)	LRT1250
	< 1250 fsec absolute	

This requirement is applicable to the entire distributed LO system for ngVLA. Most significant sources of LO phase drift may be expected to be incurred in the RTD and ATF subsystems. In particular, in the RTD subsystem it is necessary to compensate for phase drift associated with the fiber link. The requirements noted above are applicable after the compensation is applied.

These requirements come from SYS1504, 1505, 5001 in "ngVLA System Requirements," NRAO Doc# 020.10.15.10.00-0003-REQ:

SYSI504 The (relative) system phase drift residual shall not exceed 95 fsec rms per antenna over 300 seconds. Goal to meet this specification over a period of 1000 seconds.

SYSI505 The absolute phase drift per antenna over 300 seconds shall not exceed 4 psec. Goal to meet this specification over 1000 seconds.

SYS1501 takes the relative (95 fsec) and absolute (4000 fsec) drifts and allocates them to different subsystems. The frequency transfer subsystem is allocated 1/5th of the total rms noise (i.e. 95/sqrt(5)=42 fsec) for residual noise and about ten percent of the absolute drift budget (4000 psec/sqrt(10) ~ 1.25 psec.)

For absolute drift over 1000 seconds, $\tau = 1250$ fsec is equivalent to .0078 rad of phase scaled to a frequency of 1 GHz. For the frequency transfer system, the allowable absolute phase in 1000s will scale with the transmitted frequency: $\phi_{rad} \leq .0078 * f_{GHz}$

3.4.3 Key Requirements of Time Transfer

This LO Reference and Timing requirements document encompasses all of the requirements for the RTG and RTD subsystems. Here we extract a subset of these requirements that are considered driving requirements for the RTD time transfer subsystem design.

Table 3: Key	Requirements for	Time	Transfer
· · · · · ·			

Parameter	Value	Requirement#
Timing to CSP/DBE	ng to CSP/DBE Timing accuracy to CSP shall be within 3 nsec (goal of 2 nsec): Relative to the central system clock on short timescales and relative to the absolute timing standard over 1-day averaging Note: DBE subsystem is located at antenna pedestal. This requirement includes correction for fiber link delay, and accurate transmission of the corrected timing signal to the DBE subsystem at the antenna	
The data timestamping is planned for the antenna rather than central electronics building. The central CSP clock domain wi be a virtual clock determined by the timestamps and the antenna delay models, with one antenna (per subarray) selected as the reference antenna.		
Antenna Timing	The antenna clock domain shall be stable relative to the antenna LO reference to within 1 ns. This requirement supports synchronization of LO, digitizer and antenna timing signal.	LRT1357

Title : ngVLA LO Reference and Timing: Generation and Distribution Requirements	Owner: B. Shillue	Date: 2024-06-01
NRAO Doc. #: 020.35.00.00.00-0001 REC	2	Version: D

e derived directly from the frequency reference. This requirement defines
of at least one antenna per subarray y measurement or active correction or support of accurate data s relative to the central system clock s and relative to the absolute timing ay averaging. Ilenging timing requirement.

4 Requirements Management

4.1 Requirements Definitions

Consistent with the Requirements Management Plan [AD02], the following definitions of requirement "levels" are used in the ngVLA program. The requirements in this document are at the L2 subsystem level.

Requirement Level	Definition
LO	User requirements expressed in terms applicable to their needs or use cases (Science Requirements or Stakeholder Requirements)
LI	Requirements expressed in technical functional or performance terms, but still implementation agnostic (System Level Requirements)
L2	Requirements that define a specification for an element of the system, presuming a system architecture (Subsystem Requirements)

4.2 Requirements Flow Down

Individual subsystem specifications (Level 2) flow from the Level 1 requirements, and may not always be directly attributable to a single system requirement. For example, phase drift specifications at the system level may be apportioned to multiple subsystems, or a subsystem spec may be in support of multiple higher-level requirements. Completeness of the Level 2 requirements is assessed at the requirements review of each subsystem.

While this is a top-down design process, the process is still iterative rather than a "waterfall" or linear process. The feasibility and cost of requirements implementation lead to trade-offs that feedback to higher-level requirements. The end goal is to build the most generally capable system that will support the Key Science Goals within the programmatic constraints of cost and schedule.

Maintaining enumerated and traceable science requirements, system requirements, and subsystem specifications ensures this trade-off process is complete and well understood by the project team. The effect of a change in a subsystem specification can be analyzed at the system level, and thereafter the impact on a specific scientific program can be ascertained.

0	<i>Title</i> : ngVLA LO Reference and Timing: Generation and Distribution Requirements	Owner: B. Shillue	Date: 2024-06-01
ngvla	NRAO Doc. #: 020.35.00.00.00-0001 REQ		Version: D

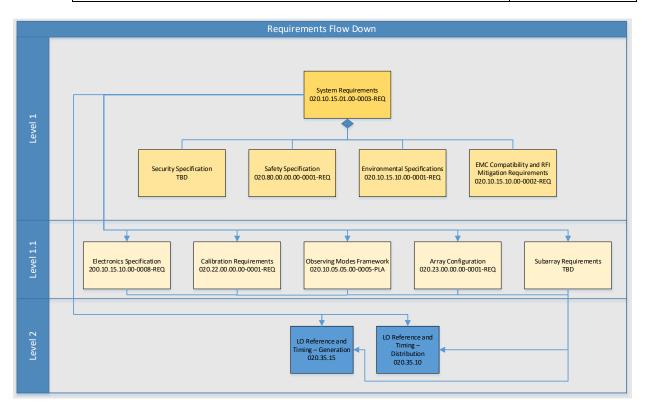


Figure 3: Requirements flow-down to the Antenna Time and Frequency Subsystem Requirements.

4.3 Verb Convention

Г

This document uses "shall" to denote a requirement. The verbs "should" and "must" denote desired but not strictly required parameters. "Will" denotes a future happening. Desired but not required features are noted as "desirable" or "goals."

5 Assumptions

The following assumptions are made in the definition of these subsystem requirements:

- Subsystem requirements apply to performance before any operational calibration corrections are applied unless explicitly stated otherwise.
- Hardware requirements apply to a properly functioning system under the precision operating environmental conditions unless explicitly stated otherwise.
- Hardware requirements assume that all system parts that would normally be in place during observations are working within their respective specifications (e.g., HVAC, RTP system) unless explicitly stated otherwise.
- Notwithstanding the desire that these requirements be implementation agnostic, a set of subsystems is assumed that interfaces with the RTG and RTD subsystems. These are defined and an overview of the interface requirements included in Section 9.
- A receiver and water vapor radiometer are located on the elevated moving structure of the antenna
- A digital backend is located in the antenna pedestal

- The RTG subsystem is nominally located in the Central Electronics building. Annex versions of the RTG will be located at LBS station locations, and possibly for far out MID stations not directly connected to the ngVLA fiber network.
- The RTD subsystem instances are located at (a) the central electronics building (b) midpoint repeater stations and (c) the antenna stations. For LBS stations and remote MID stations the "central" part of the RTD will be similar but with a much lower fan-out. (For example, at LBS sites, where there are three antenna stations, reference sources and RTD modules will fan-out to each of the three antennas).
- A central hydrogen maser is the master frequency source for the array. For remote antennas where referencing to this source is not possible, additional hydrogen masers (or other highly stable reference) will be used.
- The master frequency source will serve as the basis for the system timing clock. A counter will accumulate time and be compared to a GPS absolute time standard over long intervals (~ I day). This accumulated measurement will be recorded and then time counter reset.
- There will be no steering of the master frequency source to track absolute time.
- The most recent array configuration is [RD05]. Further revisions are expected but the overall number of antennas and geographical expanse of the array is not expected to change drastically.

6 Environmental Conditions

The ngVLA Environmental Requirements [AD04] details both environmental conditions and requirements, in general, for the ngVLA as whole. In the Level 2 subsystem requirements documents, like this one, it is necessary to extrapolate and interpret which of these conditions and requirements is applicable. In the case of the RTG and RTD subsystems, this extrapolation relies in most cases primarily on the *location* of the installed equipment.

6.1 Equipment Location

The LO Reference and Timing Generation (RTG) subsystem components will be located entirely within the ngVLA Central building. The LO Reference and Timing Distribution (RTD) Subsystem components will be located in the ngVLA Central building, in repeater stations between antenna stations, and within or on the Antenna Stations. The RTD equipment associated with the antenna station can be located either: inside the antenna pedestal, or on the elevated (and moving) structure of the antenna. The relation between the RTG and RTD equipment and the structures that they are housed **within** is shown in Figure 4. In the Central Electronic Building, the **equipment and racks** are the responsibility of the RTG and RTD subsystem work packages. In the repeater stations, the RTD equipment will be housed in racks supplied by the FIB work package. At the antenna stations the RTD equipment will be housed in racks supplied by the Antenna Electronics IPT, Bins, Modules, and Racks work package, with temperature control delivered by the EEC work package.

0	<i>Title</i> : ngVLA LO Reference and Timing: Generation and Distribution Requirements	Owner: B. Shillue	Date: 2024-06-01
ngvla	NRAO Doc. #: 020.35.00.00.00-0001 REQ		Version: D

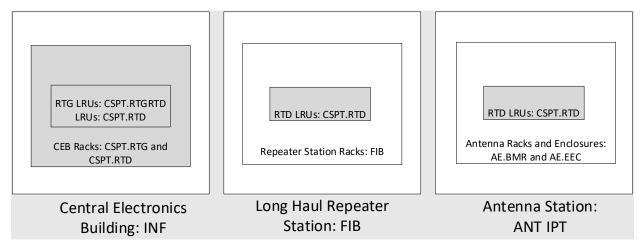


Figure 4: RTG and RTD equipment as-installed location and housing. Shaded items are deliverables of the RTG and/or RTD work packages.

The RTG and RTD equipment must be designed to meet requirements in the environmental conditions of these locations. These conditions will be defined in the relevant ICDs, as shown in Table 4 below.

Table 4: ICD References for detailed environmental requirements based on en	equipment location.	
---	---------------------	--

	ICD	Number	Ref	Subaystom	Subsystem 2	
	primary	secondary	Rei	Subsystem I	Subsystem 2	
Central Electronics	0095	0099	AD24	Computing/CSPT(RTG)	ngVLA Site Buildings (NSB)	
Building	0095	0100	AD24	Computing/CSPT(RTG)	ngVLA Site Buildings (NSB)	
Long Haul Repeater Station and Remote Stations	120	n/a	AD26	Central Fiber Infrastructure (FIB)	LO Reference and Timing - Distribution (RTD)	
A	0040	0064	AD21	Bins, Modules, and Racks	Antenna Electronics (RTD)	
Antenna Station	0069	n/a	AD22	LO Reference and Timing - Distribution (RTD)	Antenna Electronics Environmental Control System (EEC)	

6.2 Survival Conditions

Г

The RTD subsystem when installed on an antenna or in a repeater station shall survive without sustaining residual damage the following conditions:

Parameter	Req. #	Value	Traceability
Temperature	LRTOIIO	$-30 \text{ C} \le \text{T} \le +50 \text{ C}$	ENV0342

All RTD equipment is expected to be housed in a temperature-controlled environment. The operational temperature ranges associated with the deployment will be detailed in [AD22], [AD24], and [AD26]. However, in case of power outage, the survival temperature ranges noted above are applicable.

6.3 Transportation conditions

All transportation requirements area applicable for LRUs in a configuration of being packaged for regular maintenance transportation.

Parameter	Req. #	Value	Traceability
Packaging for	LRT0160	All LRT LRUs shall be transported using ESD, thermal	ETR0503
Transportation		and vibration protective packaging in accordance with	ENV0381
		the System Environmental and Electronics	ENV0382
		Specifications	ENV0531
Solar Thermal	LRT0170	Exposed to full sun, 1200W/m ² (within transport	ENV0381
Load		cases)	
Transportation	LRT0180	$-30 \text{ C} \leq \text{T} \leq +60 \text{ C}$ (within transport cases)	ENV0382
Temperature			
General	LRT0190	Vibration on all three axes, for 60 minutes.	ENV0531
Vibration			
Mechanical	LRT0200	LRUs packaged for shipping shall survive a mechanical	ENV0582
Shock		shock level defined in [AD04]. In case of shop	
		replaceable units (SRU), these shall be designed to	
		withstand the drop requirement when they are	
		packaged for shipment within the LRU.	

6.4 Storage Conditions

Parameter	Req. #	Value	Traceability
Packaging for Storage	LRT0210	All LRT LRUs shall be stored using ESD and thermal protective packaging in accordance with the System Environmental and Electronics Specifications.	ETR0503
Storage temperature	LRT0212	-20 deg C < T < +50 deg C	ENV0372
Storage humidity	LRT0214	10% < RH < 90%	ENV0373

6.5 Site Elevation

Parameter	Req. #	Value	Traceability
Altitude Range	LRT0220	All LRT elements shall be designed for operation and	ENV0351,
_		survival at altitudes ranging from sea level to 2500 m.	[AD22],
			[AD24],
			[AD26]

Equipment using air flow as a means of temperature regulation shall account for reduced air pressure at 2500m.

Title: ngVLA LO Reference and Timing:	Owner: B. Shillue	Date: 2024-06-01
Generation and Distribution		
Requirements		
NRAO Doc. #: 020.35.00.00.00-0001 REC	2	Version: D

6.6 Environmental Protection Requirements

6.6.1 Seismic

Parameter	Req. #	Value	Traceability
Seismic	LRT0230	The RTG and RTD subsystem shall be designed to	ENV0521
Protection		withstand a low-probability earthquake with up to 0.2g peak acceleration in either the vertical or the horizontal axis. Units shall not sustain residual damage under these conditions while in the installed and operational state.	

6.6.2 Lightning, Dust, Fauna, Rain/Water Infiltration and Corrosion Protection

Parameter	Req. #	Value	Traceability
Equipment Protection	LRT0240	Protection against lightning, dust, fauna, solar radiation, rain/water infiltration and corrosion shall be provided by the environmentally controlled facilities or racks in which the RTG and RTD elements are installed, as defined by the applicable ICD [AD21], [AD24], [AD26]. No RTG or RTD element shall be installed outside these facilities or racks.	ENV0541, ENV0542, ENV0571, ENV0591

6.7 Precision Operating Conditions (POC)

The RTG and RTD subsystems shall have precision performance as defined in [AD04] under the following conditions:

6.7.1 Central Electronics Building

Parameter	Req. #	Value	Traceability
Temperature POC	LRT0270	+15 C ≤ T ≤ +25 C	ENV0323
Temperature Rate of Change POC	LRT0280	< 0.2 °C per 300s	ENV0324
Air Flow	LRT0290	Sufficient air flow shall be provided by the central electronics building air handlers to maintain temperature range and stability	ENV0324

[AD24] will specify in further detail the temperature and humidity ranges which will surround the RTG and RTD subsystem LRUs in the central electronics building during precision operating conditions.

Note I: For any LBS sites with a central facility housing RTG and RTD subsystem components, these environmental requirements are applicable.

Note 2: For any annex sites that support standalone timing for MID stations, and thus housing RTG and RTD subsystem components, these environmental requirements are applicable.

Title : ngVLA LO Reference and Timing: Generation and Distribution Requirements	Owner: B. Shillue	Date : 2024-06-01
NRAO Doc. #: 020.35.00.00.00-0001 REC	2	Version: D

6.7.2 Repeater Stations

Parameter	Req. #	Value	Traceability
Temperature	LRT0300	$+10 \text{ C} \le \text{T} \le +30 \text{ C}$	ENV0313,
POC			[AD26]
Temperature	LRT0310	< 0.5 °C per 300s	ENV0314,
Rate of Change			[AD26]
POC			

[AD26] specifies in further detail the temperature and humidity ranges applicable to RTD subsystem LRUs and subassemblies in the repeater station during precision operating conditions.

6.7.3 Antenna Stations

Parameter	Req. #	Value	Traceability
Temperature	LRT0320	FEC: Tmin < T < Tmin+5.0 deg C; Tmin=5-10 deg C	ENV0313,
POC		Pedestal: Tmin < T < Tmin+15.0 deg C; Tmin=5-10	[AD22]
		deg C	
Temperature	LRT0330	< 0.1 °C per 3hr	ENV0314,
Rate of Change			[AD22]
POC			

[AD22] specifies in further detail the temperature and humidity ranges which will surround the RTD subsystem LRUs and subassemblies in the antenna station during precision operating conditions. The temperature stability specification LRT0330 is a derived specification that the LRT system has to meet.

6.8 Normal Operating Conditions (NOC)

The RTG and RTD subsystem shall have normal performance as defined in [AD04] under the following outside ambient conditions:

Parameter	Req. #	Value	Traceability
Temperature	LRT0340	+15 C ≤ T ≤ +25 C	ENV0323,
NOC			[AD24]
Temperature	LRT0350	< 0.5 °C per 300s	ENV0324,
Rate of Change			[AD24]
NOC			
Air Flow	LRT0360	Sufficient air flow shall be provided by the central	ENV0324,
		electronics building air handlers to maintain	[AD24]
		temperature range and stability	

6.8.1 Central Electronics Building

[AD24] will specify in further detail the temperature and humidity ranges which will surround the RTG and RTD subsystem LRUs in the central electronics building during normal operating conditions.

Note I: For any LBS sites with a central facility housing RTG and RTD subsystem components, these environmental requirements are applicable.

Note 2: For any annex sites that support standalone timing for MID stations, and thus housing RTG and RTD subsystem components, these environmental requirements are applicable.

Title : ngVLA LO Reference and Timing: Generation and Distribution Requirements	Owner: B. Shillue	Date : 2024-06-01
NRAO Doc. #: 020.35.00.00.00-0001 REC	2	Version: D

6.8.2 Repeater Stations

Parameter	Req. #	Value	Traceability
Temperature	LRT0370	$+10 \text{ C} \le \text{T} \le +30 \text{ C}$	ENV0323,
NOĊ			[AD26]
Temperature	LRT0380	< 0.5 °C per 300s	ENV0324,
Rate of Change			[AD26]
NOC			

[AD26] specifies in further detail the temperature and humidity ranges applicable to RTD subsystem LRUs and subassemblies in the repeater station during normal operating conditions.

6.8.3 Antenna Stations

Parameter	Req. #	Value	Traceability
Temperature NOC	LRT0390	FEC: Tmin < T < Tmin+5.0 deg C; Tmin=5-10 deg C	ENV0323, [AD22]
		Pedestal: Tmin < T < Tmin+15.0 deg C; Tmin=5-10 deg C	
Temperature Rate of Change NOC	LRT0400	< 0.25 °C per hr	ENV0324, [AD22]

[AD22] specifies in further detail the temperature and humidity ranges which will surround the RTD subsystem LRUs and subassemblies in the antenna station during normal operating conditions. The temperature stability specification LRT0400 is a derived specification that the LRT system has to meet.

6.9 Limits to Operating Conditions (LOC)

The RTG and RTD subsystem shall be able to operate for extended periods without sustaining residual damage and without meeting performance under the following outside ambient conditions, applicable to equipment in any location.

Parameter	Req. #	Value	Traceability
Temperature	LRT0410	+5 C ≤ T ≤ +30 C	ENV0332,
LOC			[AD22],
			[AD24],
			[AD26]

[AD22], [AD24] and [AD26] specify in further detail the temperature and humidity ranges applicable to RTG and RTD equipment under limit conditions.

6.10 Standby Conditions

The RTG and RTD subsystem shall be put into standby mode when ambient standby environmental conditions noted below are present. While in standby, the system shall remain capable of resuming operation within five minutes of conditions returning to within the Limits of the Operating Conditions. Should the environment then reach the Normal Operating Conditions, the system shall perform to the performance specifications associated with that environment.

Title : ngVLA LO Reference and Timing: Generation and Distribution Requirements	Owner: B. Shillue	Date : 2024-06-01
NRAO Doc. #: 020.35.00.00.00-0001 REC	2	Version: D

Parameter	Req. #	Value	Traceability
Temperature	LRT0420	+25 C ≤ T ≤ +45 C	ENV0362,
LOC			[AD22],
			[AD24],
			[AD26]

[AD22], [AD24] and [AD26] specify in further detail the temperature and humidity ranges applicable to RTG and RTD equipment under standby conditions.

7 Subsystem Requirements

Requirements for the RTG and RTD subsystem are listed below, with requirements encoded as follows:

- <u>Parameter</u>: Short (unique) name for the requirement.
- <u>Req. #</u>: Unique requirement number per [AD02]. The format is LRTNNNN where LRT is an abbreviation for "LO Reference and Timing" and NNNN is a four-digit number typically starting with 0001. Note that requirements can be applicable to either LO Reference and Timing Generation (RTG) or LO Reference and Timing Distribution (RTD) or to both.
- <u>Value</u>: Textual description of the requirement.
- <u>Traceability</u>: Identifies which higher-level requirement(s) this specific requirement is derived or copied from.

Parameter	Req. #	Value	Traceability
Number of Antennas	LRTI100	RTD subsystem distribution shall be provided to support at least 263 antennas	SYS1001, SYS1021
Antenna Stations Configuration	LRTIIIO	The RTD subsystem shall support the final antenna station configuration. All configuration studies have in common: a denser array of close in (0-2 km spacing), extended arms with lower density out to ~30 km, and further arms with greater spacing out to ~800km. Finally, long baseline subarray (LBS) on continental scale.	RD05
Maximum Fiber Length	LRTII20	350 km. Goal 1000 km	SYS1301, RD05
Connected vs Independent Stations	LRTII30	LBS stations will have standalone time and frequency sources. Select MID stations beyond 350km <i>may</i> have standalone time and frequency sources.	SYSI 301, SYSI 306, SYSI 309
Number of Subarrays	LRTI140	The RTD subsystem shall support a minimum of ten subarrays	SYS0601, SYS0603
Subarray Creation and Modification	LRTII50	Subarrays shall be able to be created, assigned, and re- assigned flexibly, without disturbing active observing.	SYS0607, SYS0608

7.1 General

Maximum Fiber Length: The longest baseline requirement is > 700km. The Rev D layout to support this includes stations out to 800 km from the center of the array. Adding 25% for deviations from line-of-

	<i>Title</i> : ngVLA LO Reference and Timing: Generation and Distribution Requirements	Owner: B. Shillue	Date : 2024-06-01
vla	NRAO Doc. #: 020.35.00.00.00-0001 REQ		Version: D

sight, the fiber distance to support this will be 1000 km. Many factors like borders, difficult terrain, and expense may prevent the extension of the fiber to these stations. Thus, we require fiber connectivity at least up to 350 km. Beyond that, a cost-performance study will determine if the stations are connected or standalone.

Subarrays: Three possible design architectures are shown below in Figure 5. In (A) the LO frequency and any frequency offset are generated in the central electronics building and split to many antennas. To support the ten-subarray requirement for this configuration, then, there would need to be at least ten of the frequency generation functions. And to support completely flexible subarraying they would each need to have the maximum number (N) of outputs (i.e. ~ 263) with a switching network to map sources to subarrays. (ALMA used this configuration with 6 subarrays, 66 antennas). For architecture B or C, there are more frequency generation functional units (one per antenna), the only difference being if they are located centrally or at the antenna. In either case they are mapped one-to-one with the antennas, and there is no need for a hardware subarray switch function. In these later two cases, the flexible subarraying requirement is met with no restriction on number of subarrays. Note that reassignment of an antenna shall not require length tuning or settling of the LOs or offset frequencies.

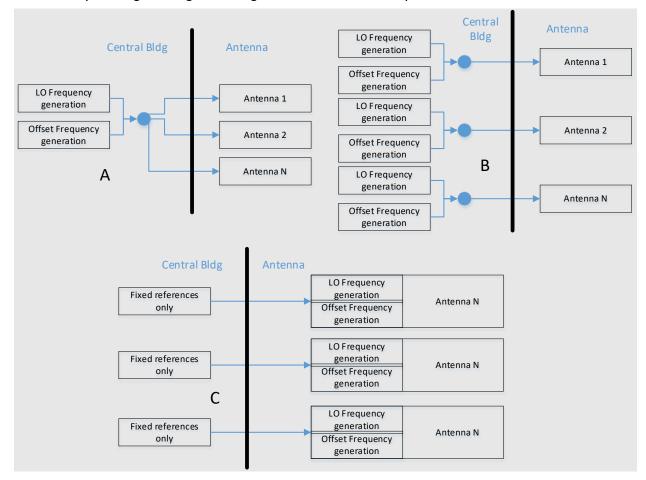


Figure 5: How design choice of RTD architecture impacts configuring of subarrays: (A) Frequencies setup centrally and split to all antennas (B) Frequencies setup centrally but mapped one-to-one with antennas (C) Central reference only. Frequencies setup at antenna, also mapped one-to-one with antennas.

7.2 Frequency

Parameter	Req. #	Value	Traceability
LO Frequency	LRT1200	LO frequencies shall be provided to support	SYS0801,
Ranges		downconversion (except instances of direct	SYS0803,
0		conversion). These shall fall in or near to the range of	SYS0804,
		sky frequencies required for ngVLA: 1.2-8 GHz, 8-50	SYS0805,
		GHz, and 70-116 GHz. Fixed or tunable LOs must	SYS0806,
		allow for continuous frequency coverage across these	SYS0903,
		spans. Additionally, the design plan must allow for	SYS0905,
		simultaneously multiple LOs in a given receiver band	[AD30]
		so that the full available instantaneous downstream	
		processing bandwidth can be achieved, and so that	
		discontinuous portions of a band may be selected.	
Simultaneous	LRT1205	All LOs in a particular receiving band must be	SYS0903,
LOs		simultaneously available	SYS0905
LO Frequency	LRT1210	Nominal LO frequencies must be capable of frequency	SYS2105,
Offsets		offsetting on a per antenna basis	SYS0603,
Onsets			SYS2217,
			[AD30]
— ·	1071000		
Tuning	LRT1220	The LO shall be tunable if necessary to cover the	SYS0906,
Resolution		required full frequency spans. If tuning is required, the	SYS0907,
		resolution shall be 250 MHz or less.	[AD30]
Switching	LRT1225	Frequency switching between or within a band shall be	SYS0908,
Speed		accomplished in < 1.5 s. The switching time is defined	[AD30]
		as time to reach full performance	
		Interface Signal Requirements	
Parameter	Req. #	Value	Traceability
RTD Input	LRT5210	RTG shall supply I PPS and a stable reference frequency	[AD29]
Frequencies		to the RTD subsystem	
from RTG			
RTD Input	LRT5220	The frequency reference supplied from RTG to the	[AD29]
Frequency		RTD subsystem must have long term accuracy from	
Accuracy from		T=1 to 1000 seconds	
RTG		T=1 sec AV<=2e-13	
		T=100 sec AV<=1e-14	
		T=1e3 sec AV<=2e-15	
RTD	LRT5230	Phase Noise at offset frequency from 1 Hz to 100	[AD29]
Frequency		MHz < 50 fsec, goal < 30 fsec rms integrated phase	
Input Stability		noise	
from RTG			
RTD	LRT5240	Signal interface between RTG and RTD per [AD29]	[AD29]
Frequency			
Input Signal			
	1	1	1
Type from RTG			

<i>Title</i> : ngVLA LO Reference and Timing: Generation and Distribution Requirements	Owner: B. Shillue	Date : 2024-06-01
NRAO Doc. #: 020.35.00.00.00-0001 REC	2	Version: D

Parameter	Req. #	Value	Traceability
ATF Frequency Input Tuning Resolution	LRT5250	If the ATF frequency input from RTD has a tunable component, then the frequency resolution shall follow the specifications in [AD30]	[AD30]
ATF Input Frequencies	LRT5260	The ATF input frequency (-ies) shall follow the specifications in [AD30]	SYS0801, SYS0803, SYS0804, SYS0805, SYS0806, SYS0903, SYS0905
ATF Input Frequency Accuracy	LRT5270	Locked to central H-maser derived clock Phase measured by round-trip method for post- correction to < 42 fsec at 300 s (linear term removed) < 1250 fsec (absolute)	SYS1501 SYS1502 SYS5001 SYS1504 SYS1505
ATF Frequency Input Signal Type	LRT5290	The ATF frequency input signal type shall follow the specifications in [AD30]	[AD30]
ATF Frequency Input Signal Level	LRT5300	The ATF frequency input signal level shall follow the specifications in [AD30]	[AD30]
CSP Input Frequency	LRT5310	The CSP frequency input from RTD shall have phase noise following the specifications in [AD28]	[AD28]
CSP Input Frequency Accuracy	LRT5320	The CSP frequency input accuracy shall follow the specifications in [AD28] and be no worse than T=1 sec AV<=2e-13 T=100 sec AV<=1e-14 T=1e3 sec AV<=2e-15	[AD28]
CSP Frequency Signal Type	LRT5330	The CSP frequency input signal type shall follow the specifications in [AD28]	[AD28]
CSP Frequency Signal Level	LRT5340	The CSP frequency input signal level shall follow the specifications in [AD28]	[AD28]

LO Frequency Ranges, Tuning Resolution, Switching Speed: RTG and RTD subsystems are nominally responsible for supplying reference frequencies to the ATF subsystem, which in turn is responsible for supporting the LO tuning range, tuning resolution, and switching speed. These requirements are included in case an architecture is developed which includes some aspect of the LO tuning in the reference transmission.

LO Frequency Offsets: The role of the per antenna small frequency offset is to provide a mechanism for image suppression and self-generated spurious that would otherwise be coherent antenna-to-antenna. Most recent design includes provision of in increments of 15.68 kHz, with an individual antenna offset = m*15.68 kHz, m = {-131, -130,...,-1,0,1,...130,131}. Support for this requirement can be implemented by either RTD or ATF subsystem [RD04]

Title : ngVLA LO Reference and Timing: Generation and Distribution Requirements	Owner: B. Shillue	Date: 2024-06-01
Requirements		
NRAO Doc. #: 020.35.00.00.00-0001 REQ	2	Version: D

7.3 Phase

Parameter	Req. #	Value	Traceability
LO Phase	LRTI240	< 76 fsec integrated from 1 Hz to maximum IF	SYS5001,
Noise		frequency offset	SYSI501,
		Goal is < 50 fsec	SYS1502,
			SYS1503,
			CAL0314,
			[AD30]
LO Phase Drift	LRT1250	< 59 fsec at 300 s (linear term removed)	SYSI501,
		< 1500 fsec (absolute)	SYS1502,
		Connected array up to 250km only	SYS5001,
		(see note I)	SYS1504,
			SYS1505,
			[AD30]
Digitizer Clock	LRT1260	< 76 fsec integrated from 1 Hz to maximum IF	SYS5001,
Phase Noise		frequency offset	SYS1503,
		Goal < 50 fsec	CAL0314,
			[AD30]
Digitizer Clock	LRT1270	< 59 fsec at 300 s (linear term removed)	SYS5001,
Phase Drift		< 15000 fsec (absolute)	SYS1504,
			SYS1505,
			[AD30]
Return to	LRT1280	Any derived LO or timing signal shall return to phase	SYS0602,
Phase		upon change in frequency from F_1 to F_2 to F_1	[AD30]
ATF Frequency	LRT5280	Less than 44 fsec integrated from 1 HZ to 1 KHz	SYS5001,
Input Phase		See	SYSI501,
Noise		Table 6	SYS1502,
			SYS1503,
			CAL0314

These system level phase critical requirements must be fulfilled by elements of the Antenna Time and Frequency subsystem (ATF). However, the ATF is in turn dependent upon receiving accurately phased reference signals from the RTD subsystem. The drift and noise stability that is required at the RTD-ATF interface will be carefully detailed in the ICD [AD30]. Generally, the stability of the reference needs to be better than the output clock/LO, at least in offset frequency regimes where there is perfect tracking (i.e. within phase lock loop bandwidths). Thus, the RTD frequency reference may be allowed significant additional phase noise at high offset frequencies, that is, at offset frequencies higher than the antenna-based oscillator phase lock loop.

Note I: LRT1250 specifies phase drift performance of the main array out to maximum baseline length of 350 km. The requirement is stricter than the equivalent phase drift between two physically separated hydrogen masers. Consistent with SYS5001 and discussion in [AD03] the requirement beyond 350km is relaxed to account for the need to have H-masers as independent frequency references at each site.

Note 2: LRT1240 specifies the rms phase noise integrated up to the maximum IF frequency. In practice, it is seldom the case for an oscillator to have significant phase noise contribution above ~ 10 or 20 MHz. Whereas in the most recent design the IF frequency goes to 2.9 GHz. Therefore, it is sufficient to measure

3	<i>Title</i> : ngVLA LO Reference and Timing: Generation and Distribution Requirements	Owner: B. Shillue	Date : 2024-06-01
vla	NRAO Doc. #: 020.35.00.00.00-0001 REC	2	Version: D

only up to the maximum offset frequency at which non-negligible contribution to phase noise occurs, for the particular oscillator type used in the design.

Note 3: LRT1280 shall be verified by implementing a frequency switching test set, with repeated switch cycles frequency from F_1 to F_2 to F_1 over a long period (one hour or more). The phase measurement at F_2 is then thrown out, and the phase samples measured at F_1 are kept. The linear drift may be removed from these samples and then the resulting concatenated phase time series shall meet the LRT1250 requirement of 42 fsec RMS averaged at 300 seconds. If the RTD design consists of only a single fixed frequency transfer to the antenna, then the requirement is met by design.

7.3.1 Phase Noise and Phase Drift Budget

For each of these requirements (LRT 1240, LRT1250, LRT1260, LRT1270, LRT1280) the design of the antenna time and frequency (ATF) subsystem contains the output LO or clock that defines the performance requirement. The LRT subsystem design must support the ATF requirements and design by supplying adequately clean and accurate references.

The overall system phase noise and drift requirements from [AD03] are shown below.

 Table 5: System Phase Noise and Drift Requirements from ngVLA System Requirements

Parameter	System Req. #		
Allocation of Phase Noise & Drift	SYS5001		
Component	Noise	Drift Residual	Absolute Drift
Component	(fsec, rms)	300 sec fsec, rms	300 sec psec
System	132	95	4.3
Sub-System Allocations:			
ANT	76	42	2
ATF (LO)	76	42	0.25
ATF (DTS Clock)	76	42	0.25
ATF (RTP)	0	42	0.25
RTD	0	42	1.25
Estimated System Total	131.64	93.91	4

- The 76 fsec from LRT1240 appears in the second row under sub-system allocations
- The 59 fsec drift residual from LRT1250 is the root sum of the 2nd and 5th row
- The 1500 fsec from LRT1240 absolute drift is the sum of the 2nd and 5th row

We also allocate a phase drift at the output of the RTD (i.e. the RTD/ATF interface). At this interface the antenna subsystem will perform cleanup phase lock loop and frequency multiplication. Nevertheless, the low frequency phase noise from the RTD output will be "copied" to the antenna system. Therefore, the relevant integration limits for verification of the RTD/ATF interface is in the low frequency regime, which we choose to be I Hz to I KHz (this can be revisited as the design matures).

Table 6: Phase noise allocation breakdown for 1st LO

Phase Noise source	Frequency offset limits	Phase noise allocation rms	RSS contribution
RTD output integrated from 1 Hz to 1 kHz	l Hz to l kHz	44 fsec	33 %
Contribution of Cleanup loop 2.9 GHz oscillator	I Hz to 2.9 GHz	31 fsec	16.6 %
Output of Cleanup Loop Oscillator	I Hz to 2.9 GHz	54 fsec	50 %
Higher frequency multiplication and synthesis	I Hz to 2.9 GHz	53.7 fsec	50 %
LO Output	I Hz to 2.9 GHz	76 fsec	100 %

7.4 Timing

The requirement for accurate array timing impacts the Central clocks, the distribution of the clocks to the CSP, and the distribution of the clocks to the antennas. These are discussed below. The following documents provide more information and context for this requirement:

- ngVLA Systems Requirements [AD03]
- System Technical Budgets [AD11]
- "Timing Requirements and Considerations" [RD04]

The two driving systems requirements are:

- **Temporal Accuracy (SYS2002):** Data Product timestamps must be referred to an absolute time standard (e.g., GPS or TAI) with an error of less than 10 ns (goal of 1 ns).
- **Timestamp Corrections (SYS2003):** Timestamps may be applied or corrected retroactively (i.e., it is not necessary for it to be known in real time.) Any timestamp corrections shall be made through a metadata table that is incorporated into the data model.

We further posit the existence of three main clock domains:

- A central system clock domain: referenced to an absolute time standard and implemented in the RTG subsystem
- A CSP clock domain
- An antenna clock domain: unique to each antenna

Requirements are given below for the central electronics building and the antenna stations. For remote stations not connected by optical fiber for LO and Timing (such as LBS stations, or the more remote MID-stations), there will be a secondary instantiation of the central electronics building with and RTG subsystem and central system clock domain. One or more stations connected to these will have a round trip corrected frequency reference serving as the basis for remote antenna clock domains. All of the requirements in Section 7.4.1 and 7.4.2 are therefore also applicable to these secondary RTG/clock systems.

Title : ngVLA LO Reference and Timing: Generation and Distribution Requirements	Owner: B. Shillue	Date : 2024-06-01
NRAO Doc. #: 020.35.00.00.00-0001 REC	2	Version: D

Note that the SYS2002 requirement will require the development of a system budget allocating contributions to the 10 nsec. A preliminary budget is detailed in [RD04] including the 2 nsec requirements given below in LRT1300 or LRT1360, applicable to timestamp accuracy.

7.4.1 Central Building

Parameter	Req. #	Value	Traceability
Timing to	LRT1300	Timing accuracy to output of RTD shall be within 2	SYS2002,
output of RTD		nsec	SYS2003,
		Relative to the central system clock on short	SYS0404
		timescales and relative to the absolute timing standard over 1-day averaging	
		Note: DBE subsystem is located at antenna pedestal.	
		This requirement includes correction for fiber link	
		delay, and accurate transmission of the corrected	
		timing signal to the DBE subsystem at the antenna	
System Domain	LRT1305	Measurement error between System Domain Clock	SYS2002
Clock		(RTG) and GPS Time: 1.67 nsec	
Accuracy		Note: 100 nsec/s noise integrated over one hour	
Timing signal type to CSP	LRTI310	CSP Timing signal type shall follow specifications in [AD28]	[AD28]
Timing Signal level to CSP	LRTI320	CSP Timing signal level shall follow specifications in [AD28]	[AD28]
Timing to CSW	LRTI330	Network time shall meet the requirements detailed in [AD25]. PTP Timing interface	[AD25]
RTD Timing	LRT1350	Timing accuracy to RTD shall be within 0.30 nsec.	[AD29]
Stability from RTG		Note: this is an interface tracking requirement.	

7.4.2 Antenna Stations

Parameter	Req. #	Value	Traceability
Time Accuracy	LRT1355	The relative difference between local antenna time and	SYS2002,
– Antenna		the system clock shall not exceed $\pm 5 \mu$ s.	SYS2003,
Station		This requirement is for relative accuracy of antenna	SYS0404,
Functions		tracking, switched power, and fringe search functions.	[RD04]
		(all antenna functions except DBE-timestamping)	
Antenna	LRT1357	The antenna clock domain shall be stable relative to	SYS2002,
Timing		the antenna LO reference to within 1 ns.	SYS2003,
		This requirement supports synchronization of LO,	SYS0404,
		digitizer and antenna timing signal.	[RD04]
Subarray timing	LRTI360	Timing correction of at least one antenna per subarray	SYS2002,
		shall be supplied by measurement or active correction	SYS2003,
		to within 2 nsec for support of accurate data	SYS0404,
		timestamping.	SYS0603,
		The requirement is relative to the central system	[RD04]
		clock on short timescales and relative to the absolute	
		timing standard over 1-day averaging.	

Title : ngVLA LO Reference and Timing: Generation and Distribution Requirements	Owner: B. Shillue	Date: 2024-06-01
NRAO Doc. #: 020.35.00.00.00-0001 REC	2	Version: D

Paramete	r	Req. #	Value	Traceability
Timing to D	OBE	LRT1380		SYS2002,
			digitizer and DBE using JESD protocols shall result in	SYS2003
			not more than I nsec residual timing error	

LRT1355:

The antenna timing is constrained by at least three functional needs:

- Antenna tracking: Timing accuracy <= 660 us
- Switched Power: Timing accuracy <=50 us
- Fringe search: Timing accuracy <=50 us

These three needs, inclusive of some design margin, lead to a requirement for the timing of the antenna system to not deviate from the system clock by more than about 5 μ s. i.e., the relative difference between local antenna time and the system clock shall not exceed ±5 μ s. This requirement must be met by the hardware alone, before the application of time corrections (online or offline) derived from astronomical calibration. We note that this is within the capabilities of the IEEE 1588 Precision Time Protocol.

LRT1357:

The design implementation will use the antenna station frequency reference to derive the antenna station timing signal. Therefore, to within the accuracy of cable drifts and/or edge jitter the antenna station references are all synchronized.

LRT1360:

Additionally, there is a need for accurate timing by either model, measurement, or active correction to at least one reference antenna in any given subarray. To fully satisfy SYS0603 (Arbitrary subarraying) the design will be implemented with an accurate timing correction to every fiber connected antenna.

7.4.3 Timing Performance Budget

A timing performance budget has been developed and set forth in [RD04].

Table 7: Timing Performance Budget

Sub-System Timing Precision Allocation	Sub- system	Error (nsec)	Notes	Associated LRT Requirement	Timing reference planes for measurement
Measurement Error: System Domain Clock Drift vs GPS Time	RTG	1.67	GPS timing error long term average	LRTI305	Maser I PPS output versus GPS I PPS
Uncorrected Time Drift from System Domain Clock (RTG) to CSP	RTG	0.00	CSP time domain is derived from DBE timestamping	N/A	N/A
Uncorrected Time Drift between System Domain Clock (RTG) and Time Distribution System (RTD)	RTD	0.30	Assumes short cable lengths in temp controlled environment	LRTI350	Maser I PPS output versus RTD I PPS input to time transmitter
Uncorrected Time Drift from System Domain Clock (RTG) to Reference Antenna Domain Clock (RTD)	RTD	2.00	Residual after round-trip correction of timing signal	LRTI300	Maser I PPS output to corrected I PPS output of Timing Receiver
Antenna Structural & Electronic Delay Drift (preceding digitizer)	ANT, SBA	0.05	4 psec over 300 sec (48 psec/hr.), combined across all systems in an antenna, between astronomical calibrations.		N/A for LRT subsystem
DBE Time Error w.r.t. Antenna Domain Clock	ATF/DBE	1.00	Assumes JESD 204D timestamping of digitized data	LRTI380	I PPS timing input to ADC JESD clocking circuit versus I PPS delivered through 25m optical fiber to the DBE
Other Delay Model Errors	ONL	1.00			N/A for LRT subsystem
Sub-System Error Sub- total		2.98	RSS Combination of Independent Errors		
		6.02	Linear Sum of Correlated Errors (worst case)		
Margin - only true if terms are independent.		9.55	(Aiming towards 1 nsec goal in allocations)		
System-level Total Error Budget		10.0	RSS Combination of Errors		

The budget shows how potential sources of timing inaccuracy are accounted for within the overall systems timing budget of 10 nsec (SYS2002). Note: shaded lines in the table refer to subsystems within LO Reference and Timing design described in this document.

For purposes of test and verification it is necessary to have a well-defined test point for the timing signals described in Table 7. A description of the reference planes appears as column six in the table.

7.5 Modes

Parameter	Req. #	Value	Traceability
Standby Mode	LRT1400	A low power standby mode shall be available for all RTG and RTD modules. Monitor and Control shall remain operational in this mode	SYS0010, SYS0011, SYS9990,
			ETR0809, ETR0810
Automatic Initialization	LRTI410	RTG and RTD modules shall automatically boot into standby mode on power-up, absent any command from M&C.	SYS0011, SYS2304, SYS3114, ETR0811

Title : ngVLA LO Reference and Timing: Generation and Distribution Requirements	Owner: B. Shillue	Date: 2024-06-01
NRAO Doc. #: 020.35.00.00.00-0001 REC	2	Version: D

Parameter	Req. #	Value	Traceability
Operating	LRT1420	Any functional operating mode can be reached by	SYS0010
Modes		command from Standby Mode.	

7.6 Spurious/RFI

7.6.1	Signal	Path	Spurious
-------	--------	------	----------

Parameter	Req. #	Value	Traceability
Spurious Narrowband Tones	LRT1500	Within 3.5 GHz of carrier < -103 dBc. Spurious narrowband tones introduced in the RTD frequency references can potentially appear in the antenna station LO system. Careful design should be made to limit this effect. Antenna LO has very stringent spurious requirement. For any reference signals developed by the RTD subsystem, the maximum acceptable spurious level shall be specified in the RTD- ATF ICD [AD30].	[AD30], SYS2104

Spurious Narrowband Tones: Spurious narrowband tones introduced in the RTD frequency references can potentially appear in the antenna station LO system. Careful design should be made to limit this effect. Antenna LO has very stringent spurious requirement. For any reference signals developed by the RTD subsystem, **the maximum acceptable spurious level shall be specified in the RTD-ATF** *ICD* [AD30]. The level indicated above is derived from a level that would be harmful if passed directly to the LO downconverter. Thus, if the RTD subsystem design, or the ATF design at the RTD interface includes a mitigating filtering effect (such as a phase locked loop), the acceptable level could be higher than -103 dBc.

7.6.2 Spurious RFI Emission – Discussion

EMC0310 specifies spurious emission level versus frequency for spectral line and continuum emission. For the RTG and RTD subsystems these are both applicable but spectral line emission is likely to be the greater concern due to the transmission and distribution of continuous-wave frequency sources and offset frequency synthesis.

For reference, the spectral line emission requirement from [AD05] is shown below (reformatted). The columns reflecting 10m distance match [AD05] and would be pertinent for equipment located in the antenna pedestal. For equipment at the secondary focus (nearly co-located with the receiver, the numbers have been reworked to reflect lower acceptable limits (by 20 dB). For equipment located in the central electronics building, the acceptable limits are higher by 14 dB, just using path loss assumptions (50m is the closest antenna to the central electronics building and thus the worst case).

Title : ngVLA LO Reference and Timing: Generation and Distribution	Owner: B. Shillue	Date: 2024-06-01
Requirements		
NRAO Doc. #: 020.35.00.00.00-0001 REQ		Version: D

Table 8:	Spectral	Line	emission	limits	from	FAD 051.
i abic o.	opectiai		CHHISSION	initic S		

		Central building 50m		Pedestal 10m		Secondary Focus Im	
	BW	2011					
Freq	(kHz)	EIRP	dBm/Hz	EIRP	dBm/Hz	EIRP	dBm/Hz
I	0.3	-115	-104	-129	-124	-149	-144
3		-101	-95	-115	-115	-135	-135
6	2	-92	-89	-106	-109	-126	-129
10	3	-86	-85	-100	-105	-120	-125
30	10	-70	-74	-84	-94	-104	-114
45	15	-64	-70	-78	-90	-98	-110
90	30	-53	-62	-67	-82	-87	-102

Table 8 is used in the formulation of the requirements in Sections 7.6.3, 7.6.4, and 7.6.5. Shielding levels may be required to meet the limits detailed there. In the central electronics building the shielding can be provided at the building, room, rack, or module level. If at the building or room level, it would be included in the appropriate ICD [AD24]. In the antenna station, custom shielded modules are anticipated, and this would be included in the ICD with the Antenna Electronics Bins, Modules, and Racks work package [AD21].

Figure 6 graphs the permitted emission level versus frequency for a wide range of frequencies expected for ngVLA. Not all of these frequencies may be in use by the RTG or RTD subsystem. Note that below 2 GHz a maximum level of -136 dBm/kHz (secondary focus), -116 dBm/kHz (pedestal), -102 dBm/kHz (central electronics building) is permitted.

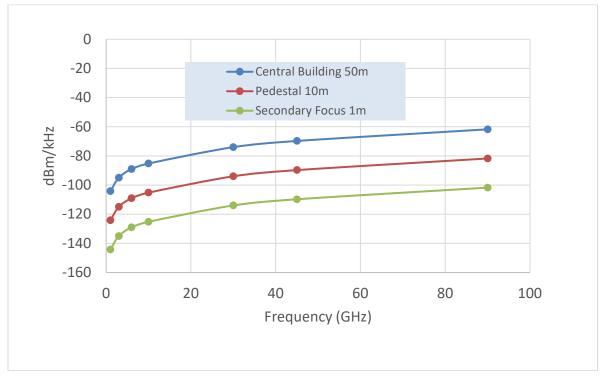


Figure 6: Emitted power level from antenna station located RTD equipment for two locations in or on the antennas.

Title : ngVLA LO Reference and Timing: Generation and Distribution Requirements	Owner: B. Shillue	Date: 2024-06-01
NRAO Doc. #: 020.35.00.00.00-0001 REC	2	Version: D

Spurious Emission Impacting IRD and ATF:

Note that in the secondary focus enclosure, direct coupling to the LO or IRD modules without benefit of shielded enclosure may be possible. Special design consideration shall be given to this possibility, minimizing opportunity of spurious emissions particularly at harmonics of clock and oscillator frequencies of the RTD.

Parameter	Req. #	Value	Traceability
Emission Verification Frequencies	LRT1610	Spurious signal emission levels shall be verified by test over a minimum range of I GHz up to 12 GHz. Modules or devices that may contain frequency content above 12 GHz shall be tested at least up to 50 GHz.	SYS2104, EMC0311
Low Frequency Emission	LRT1620	Spurious signal emission levels shall be quantified by test over an extended frequency range of 5 MHz to 1 GHz. While there is no emission threshold within this range, this information shall be collected to inform future system expansion.	SYS2104, SYS5602, EMC0312
RFI suppressing housings	LRT1630	RFI Suppression housings shall be used to contain and suppress spurious emissions, in order to meet the requirements	SYS2104, SYS2106, SYS2107

7.6.3 Central Building

Parameter	Req. #	Value	Traceability
Spurious Signal	LRT1602	Spurious signals generated by the system shall not	SYS2104,
Level Emission		exceed the equivalent isotropic radiated power limits	EMC0310
– Central		specified in Table 8 and Figure 6	[AD24]
Building			

7.6.4 Spurious RFI Emission – Repeater Stations

Parameter	Req. #	Value	Traceability
Spurious Signal Level Emission	LRT1604	Spurious signals generated by the system shall not exceed the equivalent isotropic radiated power limits specified in Table 8 and Figure 6. The allowable emission level shall be derived by accounting for the distance from the repeater station to the nearest antenna station.	SYS2104, EMC0310 [AD26]

7.6.5 Spurious RFI Emission – Antenna Stations

Parameter	Req. #	Value	Traceability
Spurious Signal Level Emission – Antenna Station	LRT1600	Spurious signals generated by the system shall not exceed the equivalent isotropic radiated power limits specified in [AD05], as elaborated in Table 8 and Figure 6. Note that different allowable emission level is applicable to modules in the pedestal vs at the secondary focus.	SYS2104, EMC0310 [AD21], [AD29]

Title : ngVLA LO Reference and Timing: Generation and Distribution Requirements	Owner: B. Shillue	Date: 2024-06-01
NRAO Doc. #: 020.35.00.00.00-0001 REC	2	Version: D

Spurious Emission impacting IRD	LRTI605	Spurious signals generated by the system shall not exceed the equivalent isotropic radiated power limits specified in [AD05]. See note Section 7.6.2 "Spurious Emission Impacting IRD, ATF."	SYS2104, EMC0310, [AD21], [AD29]
Spurious Emission impacting ATF	LRT1608	Spurious signals generated by the system shall not exceed the equivalent isotropic radiated power limits specified in [AD05]. See note Section 7.6.2 "Spurious Emission Impacting IRD, ATF."	SYS2104, EMC0310, [AD21], [AD29]

7.7 Monitor and Control

Parameter	Req. #	Value	Traceability
Self-Monitoring	LRTI635	The RTG and RTD subsystem shall measure, report	SYS2405,
0		and monitor a set of parameters that allow for	SYS2406,
		determination of its status and may help predict or	SYS2601,
		respond to failures. This shall include but not be	SYS3101
		limited to on/off status, power levels, frequency lock	
		status, and bias voltages.	
LRU Alerts	LRT1640	A subsystem alert shall be generated when an RTG or	SYS3102
		RTD LRU has an abnormal condition or failure.	
High-Cadence	LRT1650	The M&C interface shall be fast enough to support	SYS3105,
Monitoring		streaming of diagnostic data. This shall be applicable in	SYS2408
•		operational mode without affecting other performance	
		requirements.	
LRU Hot	LRT1660	RTG or RTD LRUs intended for field replacement	SYS3111
Swapping		shall be hot-swappable by design, and recover with	
		minimal intervention by maintenance and operations	
		staff.	
Remote	LRT1670	Firmware in embedded processors and configuration	SYS3223,
Updates		data in FPGAs shall be updateable remotely, in-situ.	ETR0907
Automatic	LRT1680	The RTG or RTD subsystem shall be capable of	SYS3114
Configuration		reaching an operationally-ready Standby state after a	
on Restart		full power cycle without human intervention.	
Front End	LRT1690	The RTG or RTD subsystem shall include an	SYS2407
Engineering		engineering console to display status and aid in real-	
Console		time problem diagnosis.	
M&C	LRT1700	All DC powered LRUs and complex programmable	ETR0909
Commanded		devices shall be provided with a physical reset line	
Reset for DC		connected to a local M&C device to allow remote	
Powered		reset commands to be sent. This could be	
Devices		implemented as a ganged reset to all devices in an LRU	
		or as individual lines to each device (or group of	
		devices) as determined by the designer.	
M&C	LRT1710	All AC powered LRUs shall be connected to a	ETR0912
Commanded		remotely controllable Power Distribution Unit (PDU)	
Reset for AC		or similar device which can be remotely commanded	

Title : ngVLA LO Reference and Timing: Generation and Distribution Requirements	Owner: B. Shillue	Date : 2024-06-01
NRAO Doc. #: 020.35.00.00.00-0001 REQ		Version: D

Parameter	Req. #	Value	Traceability
Powered		via the M&C system to power cycle each individual	
Devices		device.	

With regard to the self-monitoring, alerts, and high cadence monitoring: these requirements may be satisfied by:

- an RTG or RTD LRU alone, in a module which has the onboard intelligence to report status and/or alarms
- by a combination of the RTG or RTD modules and the hardware interface layer as specified in [AD23]

Parameter	Req. #	Value	Traceability
Design Life	LRT1800	The integrated modules shall be designed to be	SYS2801,
-		operated and supported for a period of 30 years.	ETR0903
Lifecycle	LRT1810	The RTG and RTD design shall minimize its lifecycle	SYS2802
Optimization		cost for 30 years of operation.	
Parts Selection	LRT1820	Parts selection and procurement criteria shall include:	SYS2803,
and		a. Sustainability and environmental impact	SYS2805,
Procurement		b. Adequate Supply of critical spares for array	SYS2812,
Criteria		lifecycle	ETR0901,
		 c. Risk mitigation against parts obsolesce and long-term availability 	ETR0902
Packaging	LRT1830	When applicable, shipping cases and packaging shall be	SYS3904
Supply		supplied for transportation and storage of RTG and	SYS3905
		RTD elements in compliance with LRT0160 packaging	SYS3912
		for transport requirement	
Quality	LRT1840	Stand-alone acceptance testing of software and	SYS3702
Control of		hardware deliverables shall occur before delivery and	
Deliverables		installation on the array.	
Test Fixtures	LRT1850	Test fixtures and procedures shall be provided for	SYS2811
		RTG and RTD subsystem verification tests	
Testing of	LRT1860	All software and firmware shall be delivered with	SYS2814
Software and		automated unit, integration, and regression testing	
Firmware		suites.	
AIV Software	LRT1870	Development tools, compilers, source code, and the	SYS2815
Tools		build system shall be delivered to enable maintenance	
		over the life of the facility.	
Incremental	LRT1880	Operational capabilities and modes shall be made	SYS2830
Delivery to		available in stages during the transition from	
Operations		construction to full operations. For the RTG and RTD	
		subsystems, this might imply a limited build-out of the	
		distribution network in the first years(s) to keep pace	
		ahead of antenna deliveries. Full support for LBS	
		stations can be staged according to the overall remote	
		station deployment schedule.	

7.8 Lifecycle

Title : ngVLA LO Reference and Timing: Generation and Distribution Requirements	Owner: B. Shillue	Date: 2024-06-01
NRAO Doc. #: 020.35.00.00.00-0001 REC	2	Version: D

Accounting for product development, integration, and array commissioning, it is reasonable to target a 30-year minimum overall lifetime.

Lifecycle costs include manufacturing, transportation, construction/assembly, operation, and decommissioning.

7.9 Configuration

The following table lists the configuration management requirements applicable to the RTG and RTD subsystem equipment.

Parameter	Req. #	Value	Traceability
Serial Numbers	LRT1900	Each LRU shall have both a visible and electronic serial number.	SYS3600
Version Control for Software and Firmware	LRT1910	All custom software and firmware delivered as part of the RTG or RTD subsystem shall be version controlled via a configuration management process.	SYS3602
Configuration Retrieval	LRT1920	Any configurable equipment shall retrieve its hardware configuration immediately after installation and power up.	SYS3603
Physical Tracking	LRT1930	Any hardware deliverable or equipment not connected to the M/C subsystem shall be equipped with a physical tracking label or device (bar code or RFID tag), to allow quick and unique identification.	ETR0404
Remote Identification	LRT1940	The RTG and RTD modules shall report the following information to the M&C system, to the extent applicable, upon request: I. Module/Model Number 2. Serial Number 3. CID Number 4. Hardware Revision Level 5. Software Revision Level 6. Firmware Revision Level Note that the software and firmware revision codes together represent a configuration that is tracked under version control	SYS3600, ETR0403
Documentation	LRT1950	Clear and complete documentation shall be delivered with the RTG or RTD LRUs and equipment, meeting project format and standards	SYS6001- SYS6005

7.10 EMC/Immunity

ngVLA standards for Electromagnetic Compatibility and Immunity are developed and described in [AD03], [AD05], and [AD09].

Parameter	Req. #	Value	Traceability
Analog shielding	LRT2200	Analog electronics, especially those containing oscillators and amplifiers, shall be shielded so that emission limits can be met. Careful EMC design shall limit conducted emission between and among	SYS2107,

Title: ngVLA LO Reference and Timing:	Owner: B. Shillue	Date: 2024-06-01
Generation and Distribution		
Requirements		
NRAO Doc. #: 020.35.00.00.00-0001 REC	2	Version: D

		subsystems – including by power supply wiring or ground loops.	
Digital shielding	LRT2210	All digital equipment shall be shielded and have its AC or DC power line and communication line(s) filtered at the chassis.	SYS2106, SYS2107, EMC0327
Commercial equipment	LRT2220	Any Commercial off-the-shelf (COTS) equipment shall conform to IEC product family standards for immunity standards, or to the generic standard IEC 61000 – Part 6: Generic Standards if no product family standard is given. Additionally, the equipment shall have a CE mark or FCC compliance ID	SYS2016, EMC0401, EMC0402
Conducted Immunity, Testing	LRT2230	LRUs shall be designed and tested for immunity to conducted voltage and noise	SYS2106, EMC0411- 0412, EMC0421- 0424, EMC0431- 0432, EMC0451- 0452, EMC0461- 0462
Electrostatic Discharge, Testing	LRT2240	LRUs shall be designed for and tested to meet ESD discharge requirements	SYS2106, EMC0471- 0473, ETR0501, ETR0505, ETR0506
Hi-Speed Design	LRT2250	RTG and RTD modules incorporating high speed digital logic shall be designed for low emission, incorporate best EMC practices, and be subject to rigorous review	SYS2016, ETR0714
ESD, Storage and Shipment	LRT2260	ESD sensitive components and modules shall use best practices for storage, shipment, and handling	SYS3904, ETR0503

7.11 Reliability, Availability, and Maintainability

Parameter	Req. #	Value	Traceability
Spurious Signal Level Emission – Central Building	LRT1602	Spurious signals generated by the system shall not exceed the equivalent isotropic radiated power limits specified in Table 8 and Figure 6	SYS2104, EMC0310 [AD24]
Reliability Analysis	LRT2300	A Reliability, Availability, Maintainability analysis shall be performed and documented as a memo by each designer at the LRU level to locate weak design points and determine whether the design meets the Maintenance and Reliability requirements.	ETR0904, SYS2402, SYS2801, SYS2802, SYS2805

Title : ngVLA LO Reference and Timing: Generation and Distribution Requirements	Owner: B. Shillue	Date : 2024-06-01
NRAO Doc. #: 020.35.00.00.00-0001 REC	2	Version: D

Availability	LRT2305	The MTBF and MTTR for the RTG and central RTD parts shall be 3000 hours and 12 hours, respectively. They should support a system budget to achieve 95% system availability	SYS2601, SYS2602
Mean Time Between Failure/Mean Time Between Maintenance	LRT2310	The RTD subsystem shall have a MTBM of 3000 hours (Note: see below) Here failures are considered in the same category as maintenance, any equipment status that would require a human intervention to address	SYS2610, SYS2605, AD11
Array Element	LRT2330	The RTD subsystem shall have a maximum MTTR of 12 hours.	SYS2611, SYS2605
MTTR Modularization	LRT2340	The system shall be modularized into Line Replaceable Units (LRUs) to facilitate site maintenance.	SYS2403
Spares Planning	LRT2350	Failure analysis shall be used in the planning of spares inventory. Factors considered shall include the projected availability for spares, the time required to repair the failure, and the viability of critical vendors.	SYS3204
Operations and Maintenance: Transfer of Deliverables	LRT2360	All procedures, test equipment, and test software shall be delivered to the Operations and Maintenance staff prior to full operations.	SYS3211
Preventive Maintenance	LRT2370	The parts of the RTG and RTD subsystems that have a direct impact on system availability should, as far as practically possible, allow for preventive maintenance without interrupting observations	SYS2603
LRU Interchange ability	LRT2380	LRUs should be interchangeable with no on-site calibration, tuning or alignment.	SYS3232
Identify Failures Physically	LRT2390	All LRUs shall identify a failed state via physical display (e.g., LED).	SYS3234
Report Predicted Failures	LRT2400	All LRUs, where possible, shall report fault prediction sensor data via the M&C system.	SYS3236
Failure Information Source	LRT2410	All LRUs shall report failure information in line with failure isolation as identified in a FMECA analysis.	SYS3237
Robustness Analysis	LRT2420	All ngVLA electronics designs shall be subject to a robustness analysis. Results of this analysis are a required part of the design review process. Robustness shall be demonstrated against environmental, power supply disturbance, vibration, monitor and control, inputs out-of-range.	ETR0905

LRT2300, LRT2305, LRT2310, and LRT2330: [AD11] has preliminary allocations for MTBF and MTBM for central and antenna-located LRUs such that the system level availability requirement is met. These preliminary allocations allow for a mean time between maintenance period that covers both preventive maintenance and corrective maintenance such that:

- There is a minimum MTBF/MTBM of 3000 hours **total** for elements of the RTG subsystem in the Central Electronics Building
- There is a minimum MTBF/MTBM of 3000 hours **total** for elements of the RTD subsystem in the Central Electronics Building
- There is a minimum MTBF/MTBM of 18520 hours **total** for elements of the RTD subsystem located at the antenna

In each of the three cases above, the sum of MTBFs of all modules and assemblies in the subsystem shall meet these limiting values.

7.12 Design Requirements

7.12.1 Printed Circuit Boards and Electrical Connections

Parameter	Req. #	Value	Traceability
Printed Circuit	LRT3200	For printed circuit boards incorporated into RTG or	ETR0701,
Boards-		RTD subsystem design:	ETR0712,
Standards		(a) Design and manufacture shall meet the IPC	SYS2402,
		Standard IPC-A-600K	SYS2803,
		Design and manufacture Shall meet RoHS 2 and 3	SYS2805
		standards	
Printed Circuit	LRT3210	Requirements for PCB materials, markings, and test	ETR0704-
Board-Design		and maintainability shall be met by design	07011,
			ETR0713,
			ETR0715-
			0717
Soldered	LRT3220	Soldered electrical connections shall use Class 2 of the	ETRI301
Electrical		IPC J-STD-001G Requirements for Soldered Electrical	
Connections		and Electronic Assemblies, per [AD09]	

Note: For commercial-off-the-shelf PCBs, these requirements are recommendations, with best effort to attempt to procure boards that meet as many of these requirements as possible.

Parameter	Req. #	Value	Traceability
Power Supply noise and	LRT3300	RTG or RTD shall achieve full performance with power supply voltage stability and rms noise levels specified in	AD21
stability		ICD	
DC Voltages	LRT3310	All RTD equipment in the ngVLA antenna station	ETR0821,
available		powered from DC voltages shall utilize voltages produced by the PSU modules, currently + 5 VDC, +/-7.5 VDC and +/-17.5 VDC.	ETR0803
PSU Voltage	LRT3320	Devices powered from the PSU modules shall tolerate	ETR0823
Tolerance		+/- 10% of the rated voltages.	
LRU Physical Ground	LRT3330	LRU chassis or housing shall be electrically connected to the antenna or building structure using a proper grounding wire. This wire can be a separate ground connection or included in the connectorized harness carrying power to the device.	ETR0804

7.12.2 Power and Ground

Title : ngVLA LO Reference and Timing: Generation and Distribution Requirements	Owner: B. Shillue	Date: 2024-06-01
Requirements		
NRAO Doc. #: 020.35.00.00.00-0001 REC	2	Version: D

Parameter	Req. #	Value	Traceability
Power Supply	LRT3340	Structural/Chassis components and signal grounds shall	ETR0814
Returns		never be used as a power supply return path.	
Separate from			
Ground			
Overcurrent	LRT3350	All ngVLA Electronics systems shall implement	ETR0805
Protection		overcurrent protection on LRUs.	
Overcurrent	LRT3360	The ngVLA M&C system shall be able to monitor the	ETR0806
Protection		state of overcurrent protection devices in an LRU. An	
Device		exception is if the circuit protection device activated	
Monitoring		disables the LRUs M&C interface.	
Thermal	LRT3370	ngVLA LRUs shall be thermally protected.	ETR0807
Protection			
Thermal	LRT3380	The LRU shall be able to monitor the state of thermal	ETR0808
Protection		protection features. An exception is if the thermal	
Monitoring		protection activated disables the LRUs M&C interface.	
Thermal	LRT3390	The designer shall analyze their designs and take steps	ETR0816
Analysis		to optimize thermal performance with a focus on	
		proper cooling, thermal stability and the elimination of	
		hot spots. The thermal design shall be published as a	
		report and included in design reviews.	
Power On	LRT3400	LRUs and power supplies shall contain externally visible	ETR0812
Indicators		LED power indicators with "steady blue" indicating	
		"nominal operation" and "blinking blue" indicating	
		"power is on but not meeting nominal conditions." In	
		RFI shielded enclosures, these may be implemented	
		with small LEDs or light pipes.	
Battery Use	LRT3410	Batteries shall not be used in the ngVLA system except	ETR0817
		in the case of the antenna –48 VDC power system and	
		a commercial UPS device for critical AC line powered	
		equipment.	
Transient	LRT3420	Transient Voltage Suppression devices shall be used on	ETR0818
Protection of		sensitive analog and digital I/O signals and power	
LRU I/O &		supplies entering or exiting an LRU. RF and other	
Power		signals that will be adversely affected by the inclusion of	
Connections		these devices are exempt from this requirement.	

7.12.3 Electrical Wiring,	Cables, Connectors
---------------------------	--------------------

Parameter	Req. #	Value	Traceability
Wiring Documentation and Labeling	LRT3500	Wiring documentation and labeling shall meet project standards [AD09]	ETRIIOI, ETRIIO2
DC voltage Wire Colors	LRT3510	DC voltages shall use a wiring color scheme as specified in [AD09]	ETRI 103- ETRI 123, ETRI 154, ETRI 155
AC power wiring colors	LRT3520	All AC wiring colors shall conform to US NEC requirements.	ETRI125

Title : ngVLA LO Reference and Timing: Generation and Distribution Requirements	Owner: B. Shillue	Date: 2024-06-01
NRAO Doc. #: 020.35.00.00.00-0001 REC	2	Version: D

Parameter	Req. #	Value	Traceability
Wire and Cable installation	LRT3530	Wire and cable protection, materials, ruggedness, installation, and insulation shall be implemented according to [AD09]	ETRI 125- ETRI 132, ETRI 156, ETRI 157, ETRI 189
Connector Documentation and Labeling	LRT3540	Connector documentation and labeling shall meet project standards [AD09]	ETRI 133, ETRI 134
Connector Selection	LRT3560	Connectors shall be selected for appropriate current rating, environmental rating, and expected number of mating cycles	ETRII35- ETRII37
Connectors for Hot Swap	LRT3570	If hot swapping is used, the design must be supported by the selection of an appropriate connector to eliminate arcing, abnormal current flow, and sequencing issues	ETRII39
Connector Design for Ease of Operation	LRT3580	Connectors shall be chosen for ease of operational and maintenance use. This includes: a. Use of keying to prevent incorrect mating b. Use of clear labeling and/or color coding Use of standardized pinouts for cables/connectors used in multiple places	ETR1141, ETR1185, ETR1142
Crimped Connectors	LRT3590	Crimped wire connections shall be preferred over solder cup, and shall utilize best assembly practice per [AD09]	ETRI 186, ETRI 187
Connector Type, Retention, and Locking	LRT3600	Connectors must meet project standards for reliable performance by complying with retention and locking standards. This is applicable to external electronic, RF, and fiber optic connectors, single and multi-pin. Internal to LRUs, PCB board connections and other critical interconnects must be designed for positive retention. ETR1212 requires a documented analysis for satisfying this requirement.	ETRI197- ETRI212

7.12.4 Materials, Lighting, and Mechanical

Parameter	Req. #	Value	Traceability
Metalwork	LRT3700	Metalwork used for modules, bins, and racks shall use	ETRI 143-
		project standard recommendations for use of	ETRI 147,
		materials, plating and coating, surface preparation and	ETRI 188
		painting.	
Lighting	LRT3710	Status lighting shall be by means of long-life LED or	ETRII48-
		OLED sources. BLUE shall be used solely to indicate	ETRI 153
		presence of power supply. RED shall be used solely to	
		indicate faults or alarms conditions. WHITE shall be	
		used only for illumination. Other colors may be used	
		at the designer's discretion for other conditions or	
		status indication. Brightness shall be set to the	
		minimum necessary for the desired function.	

Title : ngVLA LO Reference and Timing: Generation and Distribution Requirements	Owner: B. Shillue	Date : 2024-06-01
NRAO Doc. #: 020.35.00.00.00-0001 REC	2	Version: D

Fasteners	LRT3720	All screws or any type of assembly hardware shall use metric standard, and materials, labeling, and design shall be according to [AD09].	ETR1161- ETR1169, ETR1171, ETR1190, ETR1184
LRUs, mechanical	LRT3730	LRU shall be designed for ease of installation and removal, be free of rough edges, and follow project recommendations for assembly, installation, and handling per [AD09]	ETR1170, ETR1172, ETR1176- ETR1178, ETR1183
LRU documentation and dimensions	LRT3740	LRUs shall be documented with engineering dimensions, units and tolerances per [AD09].	ETRII73- ETRII75

8 Safety

8.1 Safety Requirements

This section defines all design requirements necessary to support the Level-I Safety, Security and Cybersecurity requirements.

Parameter	Req. #	Value	Traceability
Safety	LRT4200	The RTG and RTD equipment shall comply with	SYS2700,
Specification		ngVLA Safety Specifications [AD07] including physical	SYS2704
		security and monitoring	
Security Specification	LRT4210	The RTG and RTD equipment shall comply with Security Plan and Requirements [AD08]	SYS2703
		 Includes training, policy, planning in addition to hardware and physical elements Documented hazard analysis with standards approved by Safety and Systems IPT Established physical security control for each ngVLA location 	
		May include access control, entry locks, fire alarms or	
		detectors, key control (equipment and doors),	
		identification of sensitive property	
Cybersecurity Specification	LRT4220	 Compliance with NRAO Master Information Security Policy Compliance with NRAO Cyber Security Incident Response Policy Compliance with Cyber Security Access Control Policy 	SYS2702

Title : ngVLA LO Reference and Timing: Generation and Distribution	Owner: B. Shillue	Date: 2024-06-01
Requirements		
NRAO Doc. #: 020.35.00.00.00-0001 REC	2	Version: D

Parameter	Req. #	Value	Traceability
		 Follows guidelines of NSF19-68 Section 6.3 "Guidelines for Cyber Security of NSF's Major Facilities" Password control, least privilege policy, identity management, strong access authentication Most recommendations, policy, and protocols applicable at level outside or above the hardware IPT, except perhaps: Apply security updates in timely manner Embedded device firmware with version control and update features Use of segregation and firewalls Reduce software to barest minimum 	
Hazard	LRT4230	The RTG and RTD subsystem shall have hazard	SYS2700
Analysis LRU Weight Labels	LRT4240	analysis performed. LRUs in the RTG and RTD subsystems shall include at least one clearly visible label indicating the weight of the LRU in pounds. The label shall be compliant with	SYS2700, SYS3202, ETR0406
Hot Connect & Disconnect Warning Labels	LRT4250	applicable standards at the time of installation. In situations where, disconnecting cables or pulling of equipment with power on can cause damage, clearly visible labels shall be applied to warn on this condition.	SYS2700, SYS3202, ETR0410
Electrical and Optical Label Safety Standards	LRT4260	All electrical and optical safety labels shall be compliant with applicable standards at the time of installation.	ETR1016, SYS2700
Design for Optical Safety	LRT4270	All LRUs using Lasers or high intensity LEDs at levels defined as dangerous in the ANSI Z136 series of standards (RD02) shall be designed to minimize or prevent human exposure.	ETR1018, SYS2700
Optical Safety Labels	LRT4280	In all LRUs containing lasers, clearly visible labels in accordance with the IEC 60825-1:2014 Standard (RD03) shall be applied.	ETR1019, SYS2700
Connectors for Hot Swap	LRT4290	If hot swapping is used, the design must be supported by the selection of an appropriate connector for personnel and equipment safety	ETRII38
No Exposed Live Terminals	LRT4300	Live signal or power pins in connectors shall not be exposed while connectors are unmated.	ETRII40

9 Interface Requirements

Antenna Time and Frequency has interfaces with the several major subsystems as detailed in the subsections below.

9.1 Interface to PSU

[AD20] 020.10.40.05.00-0006: Interface Control Document Between: Antenna Electronics DC Power Supply (PSU) and Antenna Electronics Subsystem: section on LO Reference and Timing and Distribution (RTD) Subsystem (interface 0058)

This interface details the requirements for DC power needed to supply RTD equipment. Mechanical, thermal, and electronic interfaces are included.

A specific subset of these interface requirements (representing critical requirements) which will be fully defined in the ICD have been included in this document for tracking purposes and for completeness, as follows:

Parameter	Req. #	Value	Traceability
Power Supply	LRT3300	Power supply for RTD equipment at the antenna shall	LRTI240
noise and stability		have DC voltage power supply with low noise rms voltage level TBD	
DC Voltages available	LRT3310	Antenna-located RTD equipment shall utilize voltages produced by the PSU modules, currently + 5.0 VDC, +/- 7.5 VDC and +/- 17.5 VDC.	ETR0821
PSU Voltage Tolerance	LRT3320	Devices powered from the PSU modules shall tolerate +/- 10% of the rated voltages.	ETR0823
LRU Physical Ground	LRT3330	LRU chassis or housing shall be electrically connected to the antenna structure using a proper grounding wire. This wire can be a separate ground connection or included in the connectorized harness carrying power to the device.	ETR0804
Power Supply Returns Separate from Ground	LRT3340	Structural/Chassis components and signal grounds shall never be used as a power supply return path.	ETR0814

Table 9: RTD subsystem requirements tracked in ICD to PSU.

Additional interface requirements will be detailed in the ICD for connector and wire types and mechanical and thermal interfaces.

9.2 Interface to BMR

[AD21] 020.10.40.05.00-0040 Interface Control Document Between: Antenna Electronics Bins, Modules, and Racks (BMR) *and* Antenna Electronics Subsystem: section on LO Reference and Timing and Distribution (RTD) Subsystem (interface 0064)

This interface details the requirements for any bins, modules, or racks needed for RTD equipment. Mechanical, thermal, and electronic interfaces are included. Specific requirements which will be fully

Title : ngVLA LO Reference and Timing: Generation and Distribution Requirements	Owner: B. Shillue	Date : 2024-06-01
NRAO Doc. #: 020.35.00.00.00-0001 REC	Version: D	

defined in the ICD have been included in this document for tracking purposes and for completeness, as shown in Table 10.

Table 10: RTD subsystem requirements tracked in ICD to BMR.

Parameter	Req. #	Value	Traceability
RFI suppressing	LRT1630	RFI Suppression housings shall be used to contain and	SYSI201,
housings		suppress spurious emissions, in order to meet the	SYS2104
		requirements	SYS2106
			SYS2107
			ETR0601
RTD	LRT5410	RTD equipment shall be housed in NRAO designed	ETR0601
subsystem size		RFI-shielded rack mount ARCs modules. Size	ETRI170
in pedestal		allocation TBD [AD21]	
RTD	LRT5420	RTD equipment shall be housed in NRAO designed	ETR0601
subsystem		RFI-shielded rack mount ARCs modules. Weight	ETRI170
weight in		allocation TBD [AD21]	
pedestal			
RTD	LRT5430	RTD equipment shall be housed in NRAO designed	SYS1001,
subsystem size		RFI-shielded ARCs modules within the 1800mm wide	SYSI 101,
in front end		X 1150mm deep X 600mm enclosure	SYS2403,
enclosure		Allowable space within the enclosure will be detailed	CAL0201,
		in [AD21]	CAL0205,
			CAL0206
RTD	LRT5440	RTD equipment shall be housed in NRAO designed	SYS1001,
subsystem		RFI-shielded ARCs modules within enclosure, which	SYSI 101,
weight in front		itself shall have a maximum mass of 522kg	SYS2403,
end enclosure		Allocation of weight for RTD equipment within the	CAL0201,
		enclosure will be detailed in [AD21]	CAL0205,
			CAL0206

9.3 Interface to EEC

[AD22] 020.10.40.05.00-0069: Interface Control Document Between: LO Reference and Timing and Distribution (RTD) Subsystem *and* Antenna Electronics Environmental Control System (EEC) Subsystem

This interface details the requirements for environmental control of the RTD equipment. Mechanical, thermal (air or liquid heat transfer), and electronic interfaces are included. The interface requirement will include specific detailed requirement for the EEC subsystem for thermal control such that the environmental requirements detailed in Sections 6.7, 6.8, and 6.9 are met.

Table 11: RTD subsystem requirements tracked in ICD to EEC.

Parameter	Req. #	Value	Traceability
Precision condition temperature range	LRT320	Antenna-located RTD equipment shall operate over a precision temperature range FEC: Tmin < T < Tmin+5.0 deg C; Tmin=5-10 deg C Pedestal: Tmin < T < Tmin+15.0 deg C; Tmin=5-10 deg C	ENV0313, LRT0320
Precision condition	LRT330	Antenna-located RTD equipment shall operate with precision temperature stability	ENV0314 SYS4902

Title : ngVLA LO Reference and Timing: Generation and Distribution Requirements	Owner: B. Shillue	Date : 2024-06-01
NRAO Doc. #: 020.35.00.00.00-0001 REQ	2	Version: D

Parameter	Req. #	Value	Traceability
temperature		< 0.5 °C per 300s	SYS4904
stability			LRT1250
			LRT0330
Normal condition temperature range	LRT390	Antenna-located RTD equipment shall operate over a normal temperature range FEC: Tmin < T < Tmin+5.0 deg C; Tmin=5-10 deg C Pedestal: Tmin < T < Tmin+15.0 deg C; Tmin=5-10 deg C	ENV0313, LRT0390
Normal condition temperature stability	LRT400	Antenna-located RTD equipment shall operate with normal temperature stability < 0.5 °C per 300s	ENV0324 SYS4902 SYS4906 LRT1250 LRT0400

9.4 Interface to MCL/HIL

[AD23] 020.10.40.05.00-0077 Interface Control Document Between: Monitor and Control Hardware Interface Layer (HIL)/Monitor and Control Subsystem (MCL) (interface 0064) (incl MCL: interface 107) and LO Reference and Timing and Distribution (RTD) Subsystem

This interface details the requirements for interface between the RTD equipment hardware layer and the M&C hardware and software supervisory layers.

[AD31] Interface Control Document Between: LO Reference and Timing – Generation (RTG) and Hardware Interface Layer (HIL)

This interface details the requirements for interface between the RTG equipment hardware layer and the M&C hardware and software supervisory layers.

9.5 Interface to NSB

[AD24] 020.10.40.05.00-0095 Interface Control Document Between Computing/CSP subsystems: section on LO Reference and Timing Generation (RTG) and Distribution (RTD) Subsystems (interface 0099, 0100) and ngVLA Site Buildings (NSB) subsystem.

Parameter	Req. #	Value	Traceability
Precision	LRT270	+15 C ≤ T ≤ +25 C	ENV0313,
condition		NSB shall maintain temperature in this range	LRT0270
temperature			
range			
Precision	LRT280	CEB-located RTD and RTG equipment shall operate	ENV0314
condition		with precision temperature stability	LRT0280
temperature		< 0.2 °C per 300s	
stability		NSB room temperature controller and air flow shall	
		be defined to achieve this condition	
Precision	LRT290	CEB-located RTD and RTG equipment shall have	ENV0314
condition air		sufficient air flow be provided by the central	LRT0290
flow		electronics building air handlers to maintain	
		temperature range and stability	

Table 12: RTD/RTG subsystem requirements tracked in ICD to NSB.

<i>Title</i> : ngVLA LO Reference and Timing: Generation and Distribution	Owner: B. Shillue	Date: 2024-06-01
Requirements		
NRAO Doc. #: 020.35.00.00.00-0001 REQ		Version: D

Parameter	Req. #	Value	Traceability
		TBD cubic meters per hour supplied by NSB	
Normal	LRT340	+15 C ≤ T ≤ +25 C	ENV0323
condition		NSB shall maintain temperature in this range	LRT0340
temperature			
range			
Normal	LRT350	CEB-located RTD and RTG equipment shall operate	ENV0324
condition		with precision temperature stability	LRT0350
temperature		< 0.5 °C per 300s. NSB room temperature	
stability		controller and air flow shall be defined to achieve	
N	1072/0	this condition	
Normal condition air	LRT360	CEB-located RTD and RTG equipment shall have	ENV0324 LRT0360
flow		sufficient air flow be provided by the central electronics building air handlers to maintain	LKIUSOU
now		temperature range and stability	
		TBD cubic meters per hour supplied by NSB [AD24]	
LRT Space	LRT5500	Space shall be allocated in CEB for LRT central	SYS3800
Allocation by	EICISSOO	equipment, with space allocation TBD	5155666
NSB			
Grounding	LRT5510	A grounding design for LRT equipment racks shall be	ETR0601,
Point		provided by NSB, with design and installation of all	ETR0801
		conforming to US National Electrical Code NFPA 70	
Equipment	LRT5520	A pre-defined mechanical interface for physical	SYS3800
Rack Mounting		mounting of LRT equipment racks shall be provided	
Interface		by NSB	
Cable Trays	LRT5530	Overhead cable trays for supporting fiber optic and	SYS3800
		other signal cables shall be installed in CEB, provided	
		by NSB. Provision for routing of cables to CSP,	
		Computing, or building egress shall be made.	
LRT AC Power	LRT5540	Design and installation of all AC Power and	ETR0801
provided by		Grounding wiring shall conform to US National	
NSB		Electrical Code NFPA 70 (RD23).	575.0017
LRT UPS	LRT5550	UPS power shall be provided by NSB with capacity	ETR0817
Power		and duration TBD	
provided by NSB			
LRT Maximum	LRT5560	A maximum power consumption of LRT equipment	SYS3800
power		shall be defined, supplied by NSB	5133000
consumption in			
CEB			

9.6 Interface to MCL (RTG)

[AD25] 020.10.40.05.00-0106 (Interface 0081): Interface Control Document Between Monitor and Control System and LO Reference and Timing Generation (RTG)

This interface details the requirements for interface between the RTG equipment hardware layer and the M&C software supervisory layers.

Table 13: RTG subsystem requirements tracked in ICD between MCL/HIL and RTG.

Network Time to MCL/HIL. Delivery of I PPS for support of network PTP via 10	LRTI330
GbE SFP+ transceiver	

9.7 Interface to FIB

[AD26] 020.10.40.05.00-0120: Interface Control Document Between Central Fiber Infrastructure (FIB) and LO Reference and Timing Distribution (RTD).

Parameter	Req. #	Value	Traceability
Temperature	LRT300	RTD Repeater equipment shall operate over a	ENV0323,
range		temperature range	LRT0370
		$+10 \text{ C} \le \text{T} \le +30 \text{ C}$	
Temperature	LRT310	RTD Repeater equipment shall operate with	ENV0324
stability		temperature stability	LRT0380
		< 0.5 °C per 300s	

Table 14: RTD subsystem requirements tracked in ICD to FIB.

9.8 Interface to CSP

[AD28] 020.10.40.05.00-0123: Interface Control Document Between: Central Signal Processing (CSP) and LO Reference and Timing Generation (RTG)

The most recent planning calls for CSP to get timing from the network and run on its own clock. Thus, this is a nonexistent interface.

Should CSP at the central facility require external time and frequency references from RTG then this ICD would define the mechanical and electrical definition of the interface.

In case of future need placeholder requirements are numbered as:

 Table 15: RTD subsystem requirements tracked in ICD to CSP, if needed

CSP Input Frequency	LRT5310
CSP Input Frequency Accuracy	LRT5320
CSP Frequency Signal Type	LRT5330
CSP Frequency Signal Level	LRT5340
CSP Timing	LRT5350

Additional interface requirements would be detailed in the ICD for connector, cable and wire types and mechanical and thermal interfaces.

9.9 Interface to ATF

[AD30] 020.10.40.05.00-0125: Interface Control Document Between: LO Reference and Timing – Distribution (RTD) and Antenna Time and Frequency (ATF)

This interface details the requirements for the Antenna Time and Frequency subsystem to receive time and frequency signal from the RTD subsystem, with specified accuracy, stability, level and signal types. Physical interfaces and full mechanical, thermal, and electronic interfaces are included.

Title : ngVLA LO Reference and Timing: Generation and Distribution Requirements	Owner: B. Shillue	Date: 2024-06-01
NRAO Doc. #: 020.35.00.00.00-0001 REC	2	Version: D

A specific subset of these interface requirements (representing critical requirements) which will be fully defined in the ICD have been included in this document for tracking purposes and for completeness, as follows:

 Table 16: RTD subsystem requirements tracked in ICD to ATF.

Parameter	Req. #	Value	Traceability
Precision Temperature range	LRT0320	FEC: Tmin < T < Tmin+5.0 deg C; Tmin=5-10 deg C	ENV0323,
ATF Frequency Input Tuning Resolution	LRT5250	If the ATF frequency input from RTD has a tunable component, then the frequency resolution shall follow the specifications in [AD30]	[AD30]
ATF Input Frequencies	LRT5260	2.9 GHz – determined by LO frequency plan	ATF1205, SYS0801, SYS0803, SYS0804, SYS0805, SYS0806, SYS0903, SYS0905
ATF Input Frequency Accuracy	LRT5270	Locked to central H-maser derived clock Phase measured by round-trip method for post- correction to < 42 fsec at 300 s (linear term removed) < 1250 fsec (absolute)	SYS1501 SYS1502 SYS5001 SYS1504 SYS1505
ATF Frequency Input Phase Noise	LRT5280	Less than 44 fsec integrated from 1 Hz to 1 KHz See Table 6	SYS5001, SYS1501, SYS1502, SYS1503, CAL0314, [AD30]
ATF Frequency Input Signal Type	LRT5290	The ATF frequency input signal type shall follow the specifications in [AD30]	[AD30]
ATF Frequency Input Signal Level	LRT5300	The ATF frequency input signal level shall follow the specifications in [AD30]	[AD30]

Additional interface requirements will be detailed in the ICD for connector types and mechanical and thermal interfaces.

9.10 Interface between RTG-RTD

[AD29] 020.10.40.05.00-0124: Interface Control Document Between: LO Reference and Timing – Distribution (RTD) and LO Reference and Timing – Generation (RTG)

This interface details the requirements for the Antenna Time and Frequency subsystem to receive time and frequency signal from the RTD subsystem, with specified accuracy, stability, level and signal types. Physical interfaces and full mechanical, thermal, and electronic interfaces are included. A specific subset of

these interface requirements (representing critical requirements) which will be fully defined in the ICD have been included in this document for tracking purposes and for completeness, as follows (see 7.2):

 Table 17: RTD subsystem requirements tracked in ICD between RTG and RTD.

RTD Input Frequencies from RTG	LRT5210
RTD Input Frequency Accuracy from RTD	LRT5220
RTD Frequency Input Stability from RTD	LRT5230
RTD Frequency Input Signal Type from RTG	LRT5240
Timing from RTG to RTD	LRT1350

Additional interface requirements will be detailed in the ICD for connector types and mechanical and thermal interfaces.

9.11 Interface between RTD-AFD

[AD29] 020.10.40.05.00-0124: Interface Control Document Between: LO Reference and Timing – Distribution (RTD) and Antenna Fiber Optic System

This ICD will describe the fiber optic interface requirements to RTD. This mainly consists of single fiber instances and will be designed in concert with the antenna electronics group.

9.12 Interface between RTD-WVR

[AD33] 020.10.40.05.00-0128: Interface Control Document Between: LO Reference and Timing – Distribution (RTD) and Water Vapor Radiometer

This will detail requirements – if any – for LO reference or timing signals to the WVR

10 Technical Metrics

Technical Metrics are used throughout the project and should be monitored throughout project design and development. These parameters strongly influence the eventual effectiveness of the facility and are useful high-level metrics for trade-off decisions. Technical Performance Measures are a category of technical metrics defined at the subsystem level.

10.1 Technical Performance Measures

The Technical Performance Measures are requirements that closely impact the overall performance of the ngVLA system and are therefore considered of higher importance. The following Technical Performance Measures are identified for optimization and monitoring throughout the design phase.

 Table 18: ngVLA Key Performance Parameters

Technical Performance Measures	Req. #	Traceability LI Req. #
LO Phase Noise	LRT1240	SYS5001, SYS1503, CAL0314
LO Phase Drift	LRT1250	SYS5001, SYS1504, SYS1505

II Verification

The design will be verified to meet the requirements by analysis (A), inspection (I), a demonstration (D), or a test (T), each defined below.

Verification by Analysis: The fulfillment of the specified performance shall be demonstrated by appropriate analysis (hand calculations, finite element analysis, thermal modeling, etc.), which will be checked by the ngVLA project office during the design phase.

Verification by Inspection: The compliance of the developed system is determined by a simple inspection (of the design documentation or deliverables) or measurement.

Verification by Demonstration: The compliance of the developed feature is determined by a demonstration.

Verification by Test: The compliance of the developed subsystem with the specified performance shall be demonstrated by an acceptance test.

Multiple verification methods are allowed over the course of the design phase, although the primary (final) verification method is identified below.

11.1 Environmental Testing

The following environmental test conditions are defined:

Precision Operating Conditions: temperature range and max rate of change (POC): corresponding to requirements ATF0320, ATF0330

- Critical requirements shall be tested at the minimum, median, and maximum temperature
- Stability testing shall be conducted under temperature rate of change defined for POC

Normal Operating Conditions: temperature range and max rate of change (NOC): corresponding to requirements ATF0390, ATF0400

- Critical requirements shall be tested at the minimum, median, and maximum temperature
- Stability testing shall be conducted under temperature rate of change defined for NOC

Limit Operating Conditions (LOC):

Components exposed to Limit conditions during operations shall be tested for safe operation and for not incurring residual damage. Test profiles shall include:

- Start-up sequence from off to operational at minimum temperature (ATF0410) (at least 20 cycles).
- Extended operation (60 minutes) at maximum operating temperature (ATF0410)
- Maximum rate of change of temperature (up and down) between minimum and maximum values (at least 20 cycles) (ATF0420)

Transport conditions (Shock &Vibe)(SV):

- All LRUs that are transported shall be tested for not incurring residual damage at maximum transportation temperature over an extended period (at least 4 hours) (ATF0180)
- Prior to and after conducting SV testing, critical operational performance measures shall be tested (ATF0190, ATF0200)

11.2 Subsystem Verification Table

Req. #	Parameter/Requirement	Α		D	Т
LRT0110	Temperature	*			•
LRT0160	Packaging for Transportation	-	*		
LRT0170	Solar Thermal Load	*	-		
LRT0170	Transportation Temperature	*			
LRT0190	General Vibration	-			*
LRT0200	Mechanical Shock				*
LRT0200			*		
LRT0210	Packaging for Storage Storage temperature		*		
LRT0212	Storage humidity		*		
LRT0214	Altitude Range	*			
LRT0220	Seismic Protection	*			
LRT0230	Equipment Protection		*		
LRT0240	Temperature POC				
LRT0270	Temperature Rate of Change POC	-			
LRT0280	Air Flow				
LRT0270	Temperature POC – Repeater station	-			
LRT0300	Temperature Rate of Change POC –	-			
LKIUSIU	Repeater station				
LRT0320	Temperature POC – Antenna	-			
LRT0320	Temperature Rate of Change POC -	-			
	Antenna				
LRT0340	Temperature NOC – CEB	- Te			or verification of
LRT0350	Temperature Rate of Change NOC –	-	perfor	mance r	equirements
	CEB				
LRT0360	Air Flow - CEB	-			
LRT0370	Temperature NOC – Repeater	-			
LRT0380	Temperature Rate of Change NOC –	-			
	Repeater				
LRT0390	Temperature NOC – Antenna				
LRT0400	Temperature Rate of Change NOC -				
	Antenna				
LRT0410	Temperature LOC	*			
LRT0420	Standby			*	
LRT1100	Number of Antennas	*			
LRT1110	Antenna Stations Configuration	*			
LRT1120	Maximum Fiber Length	*			
LRTII30	Connected vs Independent Stations	*			
LRTI140	Number of Subarrays	*		T	
LRTI150	Subarray Creation and Modification	*			
LRT1200	LO Frequency				* POC, LOC, SV
LRT1205	Simultaneous LOs			T	*POC
LRT1210	LO Frequency Offsets			T	* NOC
LRT1220	Tuning resolution				* NOC
LRT1225	LO Switching Speed				* NOC

Title: ngVLA LO Reference and Timing:	Owner: B. Shillue	Date: 2024-06-01
Generation and Distribution		
Requirements		
NRAO Doc. #: 020.35.00.00.00-0001 REQ	2	Version: D

LRT1235 LO LRT1240 LO LRT1250 LO	Amplitude Amplitude Stability				* POC LOC OV
LRT1240 LO LRT1250 LO					* POC, LOC, SV
LRT1250 LO					* POC
	Phase Noise				* POC
	Phase Drift				* POC
LRT1260 Digit	tizer Clock Phase Noise				* POC
LRT1270 Digit	tizer Clock Phase Drift				* POC
LRT1280 Retu	urn to Phase				* NOC
LRT1300 Timi	ing to Output of RTD				* POC
LRTI305 Syste	em Domain Clock			*PO C	
LRTI3I0 Timi	ing signal type to CSP			*	
	ing Signal level to CSP			*	
LRT1330 Timi	ing to CSW				*
LRTI350 RTC	Timing Stability from RTG				*
	e Accuracy - Station	*			
LRTI357 Ante	enna Timing				* POC
	array Timing				* POC
	ing to DBE				*
LRT1400 Stan	dby Mode			*	
LRTI410 Auto	omatic Initialization			*	
LRT1420 Ope	erating Modes			*	
LRT1500 Spur	rious Narrowband Tones				* NOC
	rious Signal Level Emission - enna Station				* NOC
LRT1602 Spur Build	rious Signal Level Emission - Central ding				* NOC
IPTICOA Spur	rious Signal Level Emission - eater Stations				* NOC
	ious Emission impacting IRD				* NOC
	rious Emission impacting LRT				* NOC
LRT1610 Emis	ssion Verification Frequencies		*		
LRT1620 Low	Frequency Emission			*	
LRTI630 RFI	Suppression Housings			*	
LRT1635 Self-	Monitoring				* NOC,LOC, SV
LRTI640 LRU	Alerts				* NOC,LOC, SV
LRT1650 High	n-Cadence Monitoring			*	
LRTI660 LRU	Hot Swapping	*		*	
LRT1670 Rem	note Updates			*	
LRTI680 Auto	omatic Configuration on Restart			*	
LRT1690 From	nt End Engineering Console		*		
	C Commanded Reset for DC rered Devices				* NOC
IBTIZIO M&C	C Commanded Reset for AC rered Devices				* NOC
	ign Life	*		1	
	cycle Optimization	*		1	

Title: ngVLA LO Reference and Timing:	Owner: B. Shillue	Date: 2024-06-01
Generation and Distribution		
Requirements		
NRAO Doc. #: 020.35.00.00.00-0001 REC	2	Version: D

LRT1820 C LRT1830 Pa LRT1840 Q LRT1850 To LRT1860 To	arts Selection and Procurement Criteria ackaging Supply Quality Control of Deliverables est Fixtures		*		
LRT1830 Pa LRT1840 Q LRT1850 To LRT1860 To	ackaging Supply Quality Control of Deliverables est Fixtures		*		
LRT1840 Q LRT1850 T LRT1860 T	Quality Control of Deliverables est Fixtures		*		
LRT1850 T LRT1860 T	est Fixtures				
LRT1860 T			*		
			*		
	esting of Software and Firmware		*		
	IV Software Tools		*		
	cremental Delivery to Operations		*		
	erial Numbers		*		
	ersion Control for Software and rmware		*		
	Configuration Retrieval			*	
LRT1930 Pł	hysical Tracking		*		
LRT1940 R	emote Identification			*	
LRT1950 D	ocumentation		*		
	nalog shielding	*	*		
	vigital shielding	*	*		
LRT2220 C	Commercial equipment		*		
LRT2230 C	Conducted Immunity, Testing				* NOC
LRT2240 EI	lectrostatic Discharge, Testing				* NOC
LRT2250 H	li-Speed Design	*			
LRT2260 ES	SD, Storage and Shipment		*		
LRT2300 R	eliability Analysis	*			
LRT2305 A	vailability	*			
LRT2310 M	lean Time Between Failures	*			
LRT2320 M	lean Time between Maintenance	*			
LRT2330 A	rray Element MTTR	*			
LRT2340 M	Iodularization		*		
LRT2350 Sp	pares Planning	*			
LRT2360 T	ransfer of Deliverables		*		
LRT2370 A	utomated Failure Reporting			*	
LRT2380 LF	RU Interchangeability		*		
LRT2390 Id	lentify Failures Physically			*	
	eport Predicted Failures			*	
LRT2410 Fa	ailure Information Source		*		
LRT2420 R	obustness Analysis	*			
LRT3200 Pr	rinted Circuit Boards- Standards		*		
LRT3210 Pr	rinted Circuit Board-Design		*		
LRT3220 Sc	oldered Electrical Connections		*		
LRT3300 Pc	ower Supply noise and stability		*		
LRT3310 D	C Voltages available		*		
LRT3320 PS	SU Voltage Tolerance		*		
	RU Physical Ground		*		
	ower Supply Returns Separate from				* NOC
	Overcurrent Protection		*		

Title : ngVLA LO Reference and Timing: Generation and Distribution	Owner: B. Shillue	Date: 2024-06-01
Requirements		
NRAO Doc. #: 020.35.00.00.00-0001 REC	2	Version: D

Req. #	Parameter/Requirement	Α	I	D	Т
LRT3360	Overcurrent Protection Device			*	
	Monitoring				
LRT3370	Thermal Protection		*		
LRT3380	Thermal Protection Monitoring			*	
LRT3390	Thermal Analysis	*			
LRT3400	Power On Indicators			*	
LRT3410	Battery Use		*		
LRT3420	Transient Protection		*		
LRT3500	Wiring Documentation and Labeling		*		
LRT3510	DC voltage Wire Colors		*		
LRT3520	AC power wiring colors		*		
LRT3530	Wire and Cable installation		*		
LRT3540	Connector Documentation and Labeling		*		
LRT3560	Connector Selection		*		
LRT3570	Connectors for Hot Swap		*		
	Connector Design for Ease of				
LRT3580	Operation		*		
LRT3590	Crimped Connectors		*		
	Connector Type, Retention, and				
LRT3600	Locking		*		
LRT3700	Metalwork		*		
LRT3710	Lighting		*		
LRT3720	Fasteners		*		
LRT3730	LRUs, mechanical		*		
LRT3740	LRU documentation and dimensions		*		
LRT4200	Safety Specification	*			
LRT4210	Security Specification	*			
LRT4220	Cybersecurity Specification	*			
LRT4230	Hazard Analysis	*			
LRT4240	LRU Weight Labels		*		
LRT4250	Hot Connect & Disconnect Warning		*		
	Labels		•		
LRT4260	Electrical and Optical Label Safety		*		
	Standards		-		
LRT4270	Design for Optical Safety	*			
LRT4280	Optical Safety Labels		*		
LRT4290	Connectors for Hot Swap		*		
LRT4300	No Exposed Live Terminals		*		
LRT5210	RTD Input Frequencies from RTG			*	
LRT5220	RTD Input Frequency Accuracy from				
	RTG				*
LRT5230	RTD Frequency Input Stability from				*
	RTG				т
LRT5240	RTD Frequency Input Signal Type from			*	
	RTG			.1.	

0
ngvla

Title : ngVLA LO Reference and Timing: Generation and Distribution	Owner: B. Shillue	Date: 2024-06-01
Requirements		
NRAO Doc. #: 020.35.00.00.00-0001 REC	2	Version: D

Req. #	Parameter/Requirement	Α	I	D	Т
LRT5250	ATF Frequency Input Tuning				
	Resolution				*
LRT5260	ATF Input Frequencies			*	
LRT5270	ATF Input Frequency Accuracy				*
LRT5280	ATF Input Frequency Noise				*
LRT5290	ATF Frequency Input Signal Type			*	
LRT5300	ATF Frequency Input Signal Level			*	
LRT5310	CSP Input Frequency			*	
LRT5320	CSP Input Frequency Accuracy				*
LRT5330	CSP Frequency Signal Type			*	
LRT5340	CSP Frequency Signal Level				*
LRT5500	LRT Space Allocation by NSB		*		
LRT5510	Grounding Point		*		
LRT5520	Equipment Rack Mounting Interface				*
LRT5530	Cable Trays		*		
LRT5540	LRT AC Power provided by NSB		*		
LRT5550	LRT UPS Power provided by NSB		*		
LRT5560	LRT Maximum power consumption in				
	СЕВ			*	

12 Appendix

12.1 Abbreviations and Acronyms

Acronym	Description
AD	Applicable Document
AE	Antenna Electronics
AFD	Antenna Fiber Distribution subsystem
AIV	Acceptance, Integration, and Verification
ATF	Antenna Time and Frequency
AV	Allan Variance
BMR	Bins, Modules, and Racks subsystem
CDR	Conceptual Design Review
CEB	Central Electronics Building
CI	Configuration Item
CID	Configuration Item Data
CoDR	Conceptual Design Review
COTS	Commercial-off-the-Shelf
CSP	Central Signal Processing
CSPT	CSP and Timing IPT
CSW	Computing and Software
DBE	Digital Backend
DC	Direct Current
EEC	Antenna Electronics Environmental Control subsystem
EIRP	Emitted Isotropic Radiated Power
EMC	Electromagnetic Compatibility
ESD	Electrostatic Discharge
FDR	Final Design Review
FED	Front End subsystem
FIB	Central Fiber Infrastructure
GHz	Gigahertz
HIL	Hardware Interface Layer
HVAC	Heating, Ventilation, and Air Conditioning
I/F	Interface
I/O	Input-Output
ICD	Interface Control Document
IPC	Institute for Printed Circuits
IPT	Integrated Product Team
IRD	Integrated Receiver Digitizer
KPP	Key Performance Parameter
LBS	Long Baseline Subarray
LED	Light Emitting Diode
LO	Local Oscillator
LOC	Limit Operation Conditions
LRT	LO Reference and Timing
LRU	Line Replaceable Unit

Title : ngVLA LO Reference and Timing: Generation and Distribution	Owner: B. Shillue	Date: 2024-06-01
Requirements		
NRAO Doc. #: 020.35.00.00.00-0001 REQ		Version: D

Acronym	Description
M/C	Monitor and Control
MCL	Monitor and Control subsystem
MID	the MID array of ngVLA+F47
MOE	Measure of Effectiveness
MOP	Measure of Performance
MTBF	Mean Time Between Failure
MTTM	Mean Time to Maintenance
MTTR	Mean Time to Repair
ngVLA	Next Generation Very Large Array
NOC	Normal Operation Conditions
NRAO	National Radio Astronomy Observatory
NSB	ngVLA Site buildings
OLED	Organic Light Emitting Diode
PBS	Product Breakdown Structure
PCB	Printed Circuit Board
PDF	Portable Document Format
PDU	Power Distribution Unit
PE	Project Engineer
POC	Precision Operating Conditions
PPS	Pulse per second
PSU	DC Power Supply subsystem
PTP	Precision Time Protocol
RD	Reference Document
RFI	Radio Frequency Interference
RH	Relative Humidity
RTD	Reference Timing and Distribution
RTG	Reference Timing Generation
RTP	Round Trip Phase
ТВС	To Be Confirmed
TBD	To Be Determined
TPM	Technical Performance Measure
UPS	Uninterruptible Power Supply
WVR	Water Vapor Radiometer

020.35.00.00.00-0001_LRT_Generation_and_Di stribution_Requirements

Final Audit Report

2024-08-22

Created:	2024-08-22
Ву:	Pieter Kotzé (pkotze@nrao.edu)
Status:	Signed
Transaction ID:	CBJCHBCAABAAsYPmaiD_oioudky6Vz0nLF1a6an_L0lv

"020.35.00.00.00-0001_LRT_Generation_and_Distribution_Requ irements" History

- Document created by Pieter Kotzé (pkotze@nrao.edu) 2024-08-22 - 7:26:00 PM GMT- IP address: 174.56.85.49
- Document emailed to bshillue@nrao.edu for signature 2024-08-22 - 7:26:54 PM GMT
- Email viewed by bshillue@nrao.edu 2024-08-22 - 7:58:54 PM GMT- IP address: 192.131.232.128
- Signer bshillue@nrao.edu entered name at signing as B. Shillue 2024-08-22 - 7:59:24 PM GMT- IP address: 192.131.232.128
- Document e-signed by B. Shillue (bshillue@nrao.edu) Signature Date: 2024-08-22 - 7:59:26 PM GMT - Time Source: server- IP address: 192.131.232.128
- Document emailed to Pieter Kotzé (pkotze@nrao.edu) for signature 2024-08-22 - 7:59:28 PM GMT
- Email viewed by Pieter Kotzé (pkotze@nrao.edu) 2024-08-22 - 8:17:53 PM GMT- IP address: 174.56.85.49
- Document e-signed by Pieter Kotzé (pkotze@nrao.edu) Signature Date: 2024-08-22 - 8:18:05 PM GMT - Time Source: server- IP address: 174.56.85.49
- Document emailed to Rob Selina (rselina@nrao.edu) for signature 2024-08-22 - 8:18:06 PM GMT
- Email viewed by Rob Selina (rselina@nrao.edu) 2024-08-22 - 8:24:32 PM GMT- IP address: 66.173.52.81

- Document e-signed by Rob Selina (rselina@nrao.edu) Signature Date: 2024-08-22 - 8:27:47 PM GMT - Time Source: server- IP address: 66.173.52.81
- Document emailed to Willem Esterhuyse (westerhu@nrao.edu) for signature 2024-08-22 8:27:49 PM GMT
- Email viewed by Willem Esterhuyse (westerhu@nrao.edu) 2024-08-22 - 8:47:17 PM GMT- IP address: 73.31.51.29
- Document e-signed by Willem Esterhuyse (westerhu@nrao.edu) Signature Date: 2024-08-22 - 8:47:28 PM GMT - Time Source: server- IP address: 73.31.51.29

Agreement completed. 2024-08-22 - 8:47:28 PM GMT

