

### next-generation Very Large Array (ngVLA) Transition Advisory Group

Alessandra Corsi (Texas Tech. Univ.) Joseph Lazio (Jet Propulsion Laboratory, California Institute of Technology)



ngVLA.nrao.edu



## next generation Very Large Array Transition

2034 - ngVLA science operations beginning

2023 - VLA and VLBA operating









## ngVLA Transition Advisory Group

**Charge**: Guided by the scientific opportunities planned for the coming decade, the VLA/VLBA to ngVLA Transition Advisory Group (TAG) is charged to develop, quantitatively assess, and evaluate a finite number of possible VLA/VLBA to ngVLA transition options that can be prioritized on their scientific promise, cost and technical/personnel impacts.

Stefi Baum Alessandra Corsi *(Co-Chair)* Simona Giacintucci George Heald Patricia Henning *(ex officio)* Ian Heywood Daisuke Iono Megan Johnson Michael Lam Joseph Lazio *(Co-Chair)* Adam Leroy Laurent Loinard Leslie Looney Lynn Matthews Ned Molter Eric Murphy *(ex officio)*  Eva Schinnerer Alex Tetarenko Grazia Umana Alexander van der Horst





Science Case

Science Case

Science Case

Science Case

Other Facility

Community Consideration (e.g., student training)

## **Process - ngVLA Transition Matrix**

Technical

Transition Option

Technical

Transition Option

Technical Transition Option TAG ഹ drawn from NRAO set presentation, current suggestions;

drawn from Science Book, TAG suggestions; current set ~ 50

Technical

Transition Option





|                                           |                                                                                             | Technical<br>Transition Option    | Technical<br>Transition Option | Technical<br>Transition Option | Technical<br>Transition Option |                                                |  |  |  |  |  |  |  |
|-------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------|--------------------------------|--------------------------------|--------------------------------|------------------------------------------------|--|--|--|--|--|--|--|
| Science Case                              | -                                                                                           | A Transition A                    |                                |                                |                                | NRAO<br>1, TAG<br>1 ~ 15                       |  |  |  |  |  |  |  |
| Science Case                              | •                                                                                           | titative assess<br>on on each Sci |                                |                                |                                | from NF<br>itation, <sup>-</sup>               |  |  |  |  |  |  |  |
| Science Case                              |                                                                                             |                                   |                                |                                |                                | drawn from l<br>presentation<br>s: current sei |  |  |  |  |  |  |  |
| Science Case                              |                                                                                             |                                   |                                |                                |                                |                                                |  |  |  |  |  |  |  |
| Community Conside (e.g., student training | Options to determine which ones allow rapid transition to ngVLA while minimizing effects on |                                   |                                |                                |                                |                                                |  |  |  |  |  |  |  |
| Other Facility                            | S                                                                                           | science                           |                                |                                |                                | dr.<br>pr                                      |  |  |  |  |  |  |  |

drawn from Science Book, TAG suggestions; current set ~ 50





## **Assessments and Findings**

Maintain community and train new generation - ensure that ngVLA users exist!

The frequency and angular resolution dynamic ranges of the VLA and VLBA are unique and compelling scientific capabilities.

Frequency dynamic range of more than 100:1 is unparalleled.

Time domain science is a compelling opportunity for the next decade. Identified as such in *Pathways to Discovery*; Radio wavelength observations provide key information about physics of sources and ambient medium, particularly in the multi-messenger astronomy arena

Near-term Planetary Science and Heliophysics missions offer compelling opportunities for complementary observations.

Near-simultaneous observations of the Sun and Solar System planets, e.g., Parker Solar Probe, the Jupiter Icy Moons Explorer (JUICE), Dragonfly, and Europa Clipper

#### The focus of the Transition is on the VLA capabilities.

Fewer options to reduce VLBA capabilities without significant harm to scientific return

\*Not listed in any particular priority order





# **Boundary Conditions**

- VLA and VLBA capabilities must be maintained until the start of ngVLA construction
- No gap in observational capability is acceptable during the ngVLA construction.
- If ngVLA construction delayed by three years or more, conclusions of Transition Advisory Group should be revisited.

| 2023  | 2024         | 2025        | 2026 | 2027                | 2028 | 2029 | 2030 | 2031 |  |  |  |  |  |  |
|-------|--------------|-------------|------|---------------------|------|------|------|------|--|--|--|--|--|--|
| VLA a | and VLBA ope | erate as-is |      | VLA+VLI             |      |      |      |      |  |  |  |  |  |  |
|       |              |             |      | ngVLA Construction  |      |      |      |      |  |  |  |  |  |  |
|       |              |             |      | ngVLA Commissioning |      |      |      |      |  |  |  |  |  |  |





# **Elements of Recommendation**

- Maintain VLBA observational capabilities as-is
- Reassess, and potentially reduce, "call out" time for VLA repairs Allow more antennas to be inoperative for longer durations, resulting in lower instantaneous sensitivity
- Reduce or eliminate configuration changes Resulting in reduced range of angular resolution or surface brightness sensitivity or both

Need simulations to assess

• Reduce number of receivers per antenna, with at least five common frequency bands available on all antennas Resulting in reduced spectral dynamic range





# **Elements of Recommendation**

- Maintain VLBA observational capabilities as-is
- Reassess, and potentially reduce, "call out" time for VLA repairs Allow more antennas to be inoperative for longer durations, resulting in lower instantaneous sensitivity
- Reduce or eliminate configuration changes Resulting in reduced range of angular resolution or surface brightness sensitivity or both

| Р | I            | 2            | 3            | 4            | 5            | 6            | 7            | 8            | 9            | 10           | 12           | 14           | 16           | 18           | 20           | 24 | 28 | 32           | 36           | 40           | 48           | 56           | 64           | 72           | L km |
|---|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|----|----|--------------|--------------|--------------|--------------|--------------|--------------|--------------|------|
| Α |              |              |              |              |              |              |              | $\checkmark$ |              |              |              |              | $\checkmark$ |              |              | √  |    | $\checkmark$ | 21.0 |
| в |              |              |              | $\checkmark$ |              |              |              | $\checkmark$ |              |              | $\checkmark$ |              | $\checkmark$ |              | $\checkmark$ | ~  | √  | ~            | $\checkmark$ |              |              |              |              |              | 6.4  |
| С |              | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |              |    |    |              |              |              |              |              |              |              | 2.0  |
| D | $\checkmark$ |              |              |              |              |              |              |    |    |              |              |              |              |              |              |              | 0.6  |
| F |              |              | $\checkmark$ |              |              |              |              | $\checkmark$ |              |              |              | $\checkmark$ |              |              | $\checkmark$ |    | ~  |              | $\checkmark$ |              | $\checkmark$ | $\checkmark$ | $\checkmark$ |              | 17.1 |

F configuration (Wrobel & Walker, ngVLA Memo 97; https://library.nrao. edu/public/memos/ngvl a/NGVLA\_97.pdf





# **Elements of Recommendation**

- Maintain VLBA observational capabilities as-is
- Reassess, and potentially reduce, "call out" time for VLA repairs Allow more antennas to be inoperative for longer durations, resulting in lower instantaneous sensitivity
- Reduce or eliminate configuration changes Resulting in reduced range of angular resolution or surface brightness sensitivity or both

Need simulations to assess

• Reduce number of receivers per antenna, with at least five common frequency bands available on all antennas Resulting in reduced spectral dynamic range





# VLA+VLBA Transition to ngVLA

Transition to ngVLA needs to balance science and efficiency

Transition Advisory Group has developed

- initial set of assessments and findings
- boundary conditions

Current elements of likely recommended approach

- lengthening "call-out" time, effectively fewer antennas
- fixed configurationreduced receiver suite

Community feedback https://tinyurl.com/ngVLA-Transition













