

Title: ngVLA System Electronics Specifications	Owner: J. Jackson	Date: 2021-01-14
NRAO Doc. # 020.10.15.10.00-0008-REQ		Version: A

ngVLA System Electronics Specifications

020.10.15.10.00-0008-REQ Status: **RELEASED**

PREPARED BY	ORGANIZATION	DATE
J. Jackson	Electronics Div., NRAO	2020-12-09
S. Durand, Antenna Electronics IPT Lead	Electronics Div., NRAO	2021-01-14

APPROVALS	ORGANIZATION	SIGNATURES
Rob Selina, Project Engineer	Electronics Division, NRAO	
Thomas Kusel, Systems Engineer	Project Management Division, NRAO	
Rick Farnsworth, Project Manager	Project Management Division, NRAO	

RELEASED BY	ORGANIZATION	SIGNATURE
Rick Farnsworth, Project Manager	Project Management Division, NRAO	

Title: ngVLA System Electronics Specifications	Owner: J. Jackson	Date: 2021-01-14
NRAO Doc. # 020.10.15.10.00-0008-REQ		Version: A

Change Record

Version	Date	Author	Affected Section(s)	Reason
I	2019-11-18	Durand	All	Initial Draft
2	2019-11-20	Lenox	I and 2	Reformatting
3	2019-11-26	Jackson	All	Text Editing
4	2019-12-04	Durand	All	Text Editing
5	2019-12-05	Jackson	All	Text Editing
6	2020-01-09	Jackson	All	Major editing
7	2020-01-31	Jackson/ Durand	All	Major editing
8	2020-05-18	Jackson	All + SysML Model	Extensive text & requirement editing, reformatting. Assigned IDs & verification methods to requirements, added many ADs and RDs. Work on incorporating and synchronizing requirements with ngVLA Cameo SysML model.
9	2020-07-17	Jackson	All + SysML Model	Extensive text & requirement editing, reformatting. All requirements are in the ngVLA Cameo SysML model (except section 11.5).
10	2020-07-23	Jackson	4.5, 9.2.2, 11.2.9, 11.2.10, 11.5 + SysML Model	Added and/or edited requirements and text in these sections. Also included changes in SysML model. Also renamed SysML model of his doc from L2 to L1.1 (per Rob S.)
11	2020-08-03	Jackson	All + SysML Model	Added and/or edited requirements and text in all sections. Also included changes in SysML model.
12	2020-08-31	Lear	All	Formatting, copy edits to prepare document for review; added Acronyms & Abbreviations table
13	2020-12-09	Jackson	All + SysML Model	Implement many changes & updates from major document review on 2020-09-30. All changes also reflected in ngVLA SysML model.
14	2021-01-12	Kusel	14	Added phasing of verification methods
15	2021-01-14	Durand	All	Minor edits
Α	2021-01-14	Lear	All	Minor copy edits and formatting; removed notes; prepared PDF for release as v.A.

Title: ngVLA System Electronic	S
Specifications	

Owner: J. Jackson

Date: 2021-01-14

NRAO Doc. # 020.10.15.10.00-0008-REQ

Version: A

Table of Contents

1	Introduction	6
1.1	Purpose	
1.2	Scope	
1.3	Considerations	
2	Related Documents and Drawings	6
2.1	Applicable Documents	
2.2	Reference Documents	
2.3	Driving Requirements	9
3	Line Replaceable Units	
4	Physical and Online Identification	10
4.1	, Marking	
4.2	Physical Tracking	
4.3	Remote Monitor and Control Identification	
4.4	Non M&C LRU Identification	
4.5	Labels for Physical Safety	12
5	Electrostatic Discharge Protection	13
5. I	LRU and Sub-Assembly Requirements	
5.2	Protection of Workspaces and Operational Environments	14
5.3	Storage and Shipping of ESD Sensitive Hardware	
5.4	Buildup of Static Charge	
6	Radio Frequency Interference/Electro-Magnetic Compatibility	15
7	Printed Circuit Boards	16
7 7.1	Printed Circuit Boards	
•		17
7.1	Printed Circuit Board Types	17 17
7.1 7.2	Printed Circuit Board Types	1 7 1 7 17
7.1 7.2 7.2.1	Printed Circuit Board Types	1 7 1 7 17 18
7.1 7.2 7.2.1 7.2.2	Printed Circuit Board Types Materials PCB Substrate PCB Plating Solder Mask Material Markings	1 7 17 17 18 18
7.1 7.2 7.2.1 7.2.2 7.2.3 7.3 7.3.1	Printed Circuit Board Types Materials PCB Substrate PCB Plating Solder Mask Material Markings Solder Mask Color	17 17 17 18 18
7.1 7.2 7.2.1 7.2.2 7.2.3 7.3 7.3.1 7.3.2	Printed Circuit Board Types	17 17 17 18 18
7.1 7.2 7.2.1 7.2.2 7.2.3 7.3 7.3.1 7.3.2 7.3.3	Printed Circuit Board Types Materials PCB Substrate PCB Plating Solder Mask Material Markings Solder Mask Color PCB Overlay Legend and Marking Ink Material and Color Identification Information	17 17 17 18 18 18 19
7.1 7.2 7.2.1 7.2.2 7.2.3 7.3. 7.3.1 7.3.2 7.3.3 7.4	Printed Circuit Board Types Materials PCB Substrate PCB Plating Solder Mask Material Markings Solder Mask Color PCB Overlay Legend and Marking Ink Material and Color Identification Information High Frequency/Low Emission Design Requirements for PCBs	17 17 17 18 18 19 19
7.1 7.2 7.2.1 7.2.2 7.2.3 7.3 7.3.1 7.3.2 7.3.3 7.4 7.5	Printed Circuit Board Types Materials PCB Substrate PCB Plating Solder Mask Material Markings Solder Mask Color PCB Overlay Legend and Marking Ink Material and Color Identification Information High Frequency/Low Emission Design Requirements for PCBs Test and Maintainability of PCBs	17 17 17 18 18 19 19 19
7.1 7.2 7.2.1 7.2.2 7.2.3 7.3 7.3.1 7.3.2 7.3.3 7.4 7.5	Printed Circuit Board Types Materials PCB Substrate PCB Plating Solder Mask Material Markings Solder Mask Color PCB Overlay Legend and Marking Ink Material and Color Identification Information. High Frequency/Low Emission Design Requirements for PCBs Test and Maintainability of PCBs Power, Grounding, and Circuit Protection	17 17 18 18 19 19 20 21
7.1 7.2 7.2.1 7.2.2 7.2.3 7.3 7.3.1 7.3.2 7.3.3 7.4 7.5 8	Printed Circuit Board Types Materials PCB Substrate PCB Plating Solder Mask Material Markings Solder Mask Color PCB Overlay Legend and Marking Ink Material and Color Identification Information High Frequency/Low Emission Design Requirements for PCBs Test and Maintainability of PCBs Power, Grounding, and Circuit Protection AC Power and Grounding System Design	17 17 17 18 18 19 19 20 21
7.1 7.2 7.2.1 7.2.2 7.2.3 7.3.1 7.3.2 7.3.3 7.4 7.5 8 8.1 8.2	Printed Circuit Board Types Materials PCB Substrate PCB Plating Solder Mask Material Markings Solder Mask Color PCB Overlay Legend and Marking Ink Material and Color Identification Information High Frequency/Low Emission Design Requirements for PCBs Test and Maintainability of PCBs Power, Grounding, and Circuit Protection AC Power and Grounding System Design DC Power and Grounding Physical Connection Design	17 17 18 18 19 19 20 21
7.1 7.2 7.2.1 7.2.2 7.2.3 7.3.1 7.3.2 7.3.3 7.4 7.5 8 8.1 8.2 8.3	Printed Circuit Board Types Materials PCB Substrate PCB Plating Solder Mask Material Markings Solder Mask Color PCB Overlay Legend and Marking Ink Material and Color Identification Information High Frequency/Low Emission Design Requirements for PCBs Test and Maintainability of PCBs. Power, Grounding, and Circuit Protection AC Power and Grounding System Design DC Power and Grounding Physical Connection Design Fusing and Protection	17 17 18 18 19 20 21 22 22
7.1 7.2 7.2.1 7.2.2 7.2.3 7.3 7.3.1 7.3.2 7.3.3 7.4 7.5 8 8.1 8.2 8.3 8.3.1	Printed Circuit Board Types Materials PCB Substrate PCB Plating Solder Mask Material Markings Solder Mask Color PCB Overlay Legend and Marking Ink Material and Color Identification Information High Frequency/Low Emission Design Requirements for PCBs Test and Maintainability of PCBs Power, Grounding, and Circuit Protection AC Power and Grounding System Design DC Power and Grounding Physical Connection Design Fusing and Protection Over Current Protection	17 17 18 18 19 20 21 22 22 23
7.1 7.2 7.2.1 7.2.2 7.2.3 7.3 7.3.1 7.3.2 7.3.3 7.4 7.5 8 8.1 8.2 8.3 8.3.1 8.3.2	Printed Circuit Board Types Materials PCB Substrate PCB Plating Solder Mask Material Markings Solder Mask Color PCB Overlay Legend and Marking Ink Material and Color Identification Information High Frequency/Low Emission Design Requirements for PCBs Test and Maintainability of PCBs Power, Grounding, and Circuit Protection AC Power and Grounding System Design DC Power and Grounding Physical Connection Design Fusing and Protection Over Current Protection Thermal Protection and Analysis	17 17 18 18 19 20 21 22 22 23 23
7.1 7.2 7.2.1 7.2.2 7.2.3 7.3.1 7.3.2 7.3.3 7.4 7.5 8 8.1 8.2 8.3 8.3.1 8.3.2	Printed Circuit Board Types Materials	17 17 18 18 19 19 20 21 22 23 23 24
7.1 7.2 7.2.1 7.2.2 7.2.3 7.3 7.3.1 7.3.2 7.3.3 7.4 7.5 8 8.1 8.2 8.3 8.3.1 8.3.2	Printed Circuit Board Types Materials PCB Substrate PCB Plating Solder Mask Material Markings Solder Mask Color PCB Overlay Legend and Marking Ink Material and Color Identification Information High Frequency/Low Emission Design Requirements for PCBs Test and Maintainability of PCBs Power, Grounding, and Circuit Protection AC Power and Grounding System Design DC Power and Grounding Physical Connection Design Fusing and Protection Over Current Protection Thermal Protection and Analysis	17 17 18 18 19 19 20 21 22 22 23 24 24

Title: ngVLA System Electronics Specifications

Owner: J. Jackson

Date: 2021-01-14

NRAO Doc. # 020.10.15.10.00-0008-REQ

Version: A

9	Electronics Reliability and Maintainability	27
9.1	Design for Reliability	
9.2	Component Selection	
9.2.1	Reputable Manufacturers and Proven Suppliers	28
9.2.2	Standard ngVLA Libraries of Parts	
9.2.3	Utilize Components Designed and Specified for Their Environment	28
9.3	Reliability Analysis	
9.4	Design Robustness	30
9.5	Programmable Devices	30
9.5.1	Firmware Field Upgradability and Storage Location	30
9.5.2	Watchdog Timers and Recovery	31
9.6	Periodic Self-Tests and Advanced Diagnostics	32
9.7	Electronic Test Equipment	32
10	Electrical, Electronics, and Optical Safety	32
10.1	US National Electric Code Compliance	
10.2	Contact with High Voltages	32
10.3	Protection of Electrical Storage Devices	33
10.4	Electrical Safety Labeling	
10.5	Optical and Laser Safety	34
П	Mechanical and Wiring	35
11.1	Electrical Wiring and Cables	
11.1.1	•	
11.1.2		
11.1.3		
11.1.4		
11.1.5	<u> </u>	37
11.1.6		37
11.1.7		37
11.1.8		
11.1.9	Use of Riser Grade Cables	37
11.1.1	0 Flexibility, Ruggedness, and Protection of Cables Subject to Repeated Bending or	
	Motion and Bend Radius Control	38
11.1.1	6	
11.1.1		
11.1.1	7,10 110 110 110 110 110 110 110 110 110	
11.2	Connectors	
11.2.1		
11.2.2		
11.2.3	G G G G G G G G G G G G G G G G G G G	
11.2.4	8	
11.2.5	6 /	
11.2.6		
11.2.7	· · · - · r · · · · · · · · · · · · · ·	
11.2.8	1 / 0	
11.2.9	0	
11.2.1	1 0 0	
11.2.1	Connectors with Crimped Pins	42

Title: ngVLA System Electronics Specifications	Owner: J. Jackson	Date: 2021-01-14
NRAO Doc. # 020.10.15.10.00-0008-REQ		Version: A

11.3	Surface Finish, Plating, and Painting of Electronic Components, Housings, and	
	Assemblies	42
11.3.1	Surfaces Requiring Electrical Conductivity for RFI/EMC Purposes or Safety Grounding	42
11.3.2	Surface Finish of Environmental Shielding for RFI/EMC Enclosures	43
11.3.3	For Surfaces Not Requiring Electrical Conductivity	43
11.3.4	Paint Colors	43
11.4	Lighting – Colors and Type	4 4
11.5	Mechanical Assemblies Engineering Requirements	45
12	Surge and Lightning Protection for Cables Entering a Building or	
	Enclosure	. 48
13	Soldering and Electrical Connections	. 49
14	Verification and Quality Assurance	. 49
15	Appendix	. 55
15.1	Acronyms and Abbreviations	55

Title: ngVLA System Electronics Specifications	Owner: J. Jackson	Date: 2021-01-14
NRAO Doc. # 020.10.15.10.00-0008-REQ		Version: A

I Introduction

I.I Purpose

The purpose of this ngVLA Engineering Specification Document is to provide requirements and guidelines for ngVLA electronics designers to be applied to all electronic subsystems in the telescope. The designs shall consider manufacturability, reliability, maintainability, operability, extensibility, fault tolerance, interoperability, resilience, robustness, testability, and stability as nonfunctional requirements relevant to the ngVLA system design.

1.2 Scope

The requirements, and the applicable discussions, included in this document shall apply to all electronic subsystems and equipment designed and built for the ngVLA telescope by NRAO, national and international program partners, vendors, and contractors. It is recognized that some of these requirements may not be practical in the case of commercial-off-the-shelf (COTS) equipment. In this case, the subsystem designer(s) and/or contracts and procurements staff shall make a "best attempt" to ensure as many of these requirements as possible are met.

1.3 Considerations

A primary consideration for both the design and the estimated maintenance costs is array availability. Since maintenance costs are primarily determined by the staffing level, the maintenance efficiency must be improved over current observatory standards. For the ngVLA, the array maintenance efficiency will be improved (at a *minimum*) by a factor of three compared to the VLA through a reduction in the frequency of maintenance visits. Achieving these efficiency improvements requires careful planning and forward-looking design decisions long before the array is constructed and operational. The decision process includes a thorough understanding of expected equipment performance, system design life, and maintainability.

The design life and system Mean Time Between Failure (MTBF) estimates of the electronics shall be consistent with the requirement that the antenna hardware is expected to operate for a year or more between PM and/or maintenance visits. In other words, the limited number of maintenance staff hours will drive the overall system quality requirements.

2 Related Documents and Drawings

2.1 Applicable Documents

The following documents are applicable to this Requirements Specification to the extent specified. An understanding of these documents is necessary to fully comprehend the scope of this Requirements Specification. In the event of conflict between the documents referenced herein and the content of this Requirements Specification, the content of the highest-level specification (in the requirements flow-down) shall be considered the superseding requirement.

Ref. No.	Document Title	Rev./Doc. No.
AD01	ngVLA System Requirements	020.10.15.10.00-0003-REQ
AD02	ngVLA Configuration Management Plan	020.10.10.15.00-0001-PLA
AD03	ngVLA Operations Concept	020.10.05.00.00-0002-PLA

Title: ngVLA System Electronics Specifications	Owner: J. Jackson	Date: 2021-01-14
NRAO Doc. # 020.10.15.10.00-0008-REQ		Version: A

Ref. No.	Document Title	Rev./Doc. No.
AD04	ngVLA Documentation Management Plan	020.10.10.10.00-0001-PLA
AD05	ngVLA System Electromagnetic Compatibility and Radio Frequency Interference Mitigation Requirements	020.10.15.10.00-0002-REQ
AD06	Level 0 Safety Requirements	020.10.15.00.00-0004-REQ
AD07	System Environmental Specifications	020.10.15.10.00-0001-SPE
AD08	ngVLA Assembly, Integration and Verification (AIV) Concept	020.10.05.00.00-0005-PLA
AD09	Level I Security Requirements	020.80.00.00.00-0003-REQ
ADI0	Level I Safety Requirements	020.80.00.00.00-0001-REQ

2.2 Reference Documents

The following references, specifications and standards provide supporting context. The revision or edition in effect at the start of the design is the version in force.

Ref. No.	Document Title	Rev./Doc. No.
RD01	RFI Emission Limits for Equipment at the EVLA Site	EVLA Memo #106. Perley, Brundage, Mertely.
RD02	Attenuation of Radio Frequency Interference by Interferometric Fringe Rotation	EVLA Memo #49. Perley.
RD03	Protection Criteria Used for Radio Astronomical Measurements	Recommendation ITU-R RA.769-2
RD04	Department of Defense Standard Practice: Marking of Electronic Items (02 Nov 1999)	MIL-STD-13231
RD05	Detail Specification: Plates, Tags, and Bands for Identification of Equipment, General Specification for (28 Nov 1997)	MIL-DTL-15024
RD06	Detail Specification: Plates, Identification or Instruction, Metal Foil, Adhesive Backed General Specification for (06- Jul-2006)	MIL-P-19834
RD07	G. T. Dangelmayer, AT&T ESD Program Management, Chapman & Hall, 1990	ISBN-13: 978-1-4612-8500-7
RD08	Electrostatic Discharge Control Program for Protection of Electrical and Electronic Parts, Assemblies and Equipment (Excluding Electrically Initiated Explosive Devices) (25 Oct 1995)	Mil-Std-1686c
RD09	Electrostatic Discharge (ESD) Control Handbook for Protection of Electrical and Electronic Parts, Assemblies, and Equipment (Excluding Electrically Initiated Explosive Devices) (31 Jul 1994)	MIL-HDBK-263B
RDI0	IPC Specification for Acceptability of Printed Boards	IPC-A-600K
RDII	IPC Standard Generic Performance Specification for Printed Boards	IPC-6011
RD12	IPC Standard for Qualification and Performance Specification for Rigid Printed Boards	IPC-6012D
RD13	IPC Qualification and Performance Specification for Flexible/Rigid-Flexible Printed Boards	IPC-6013D
RD14	IPC Qualification and Performance Specification for High Frequency (Microwave) Printed Boards	IPC-6018C

Title: ngVLA System Electronics Specifications	Owner: J. Jackson	Date: 2021-01-14
NRAO Doc. # 020.10.15.10.00-0008-REQ		Version: A

Ref. No.	Document Title	Rev./Doc. No.
RD15	IPC Specification for Base Materials for Rigid and Multilayer Printed Boards	IPC-4101E
RD16	IPC Specification for Flexible Base Dielectrics for Use in Flexible Printed Boards	IPC-4202B
RD17	IPC Requirements and Acceptance for Cable and Wire Harness Assemblies	IPC/WHMA-A-620D
RD18	IPC Acceptability of Electronic Assemblies	IPC-A-610G
RD19	IPC Requirements for Soldered Electrical and Electronic Assemblies	IPC J-STD-001G
RD20	IPC Rework, Modification, and Repair of Electronic Assemblies	IPC-7711/21C
RD21	IPC Acceptability Standard for Manufacture, Inspection, and Testing of Electronic Enclosures	IPC-A-630
RD22	ANSI Standard Protection of Electrical and Electronic Parts, Assemblies and Equipment	ANSI/ESD S20.20-2014
RD23	US National Electrical Code (NEC)	NFPA 70
RD24	US Military Handbook: Reliability Prediction of Electronic Equipment	MIL-HDBK-217F(2)
RD25	US Military Handbook: Reliability/Design Thermal Applications	MIL-HDBK-251
RD26	US Military Handbook: Electronic Reliability Design	MIL-HDBK-338B
RD27	Electronic Components – Reliability – Reference Conditions for Failure Rates and Stress Models for Conversion	IEC 61709 Ed.3.0 b:2017
RD28	Cable Labeling Standards	ANSI / TIA 606-C
RD29	NEMA Standard – Industrial Laminating Thermosetting Products	NEMA LI I-1998
RD30	IPC Specification for Electroless Nickel/Immersion Gold (ENIG) Plating for Printed Circuit Boards and associated docs	IPC-4552, IPC-4552 Amendment I, IPC-4552 A
RD31	IPC Specification, "Qualification and Performance Specification of Permanent Solder Mask"	IPC-SM-840E
RD32	IPC Specification, "Qualification and Performance Specification of Permanent, Semi-Permanent and Temporary Legend and/or Marking Inks"	IPC-4781
RD33	Military Specification, Chemical Conversion Coatings on Aluminum and Aluminum Alloys	MIL-DTL-5541E
RD34	ESD Association Standard for the Protection of Electrostatic Discharge Susceptible Items – Packaging Materials for ESD Sensitive Items	ANSI/ESD S541-2003
RD34	Electromagnetic Compatibility (EMC) Part 3–5: Limits – Limitation of voltage fluctuations and flicker in low-voltage power supply systems for equipment with rated current greater than 75 A	IEC 61000-3-5:2009
RD35	ISO General Purpose Screw Threads – Basic Profile – Part 1: Metric Screw Threads	ISO 68-1:1998
RD36	RoHS 2 – EU Directive on the restriction of the use of certain hazardous substances in electrical and electronic equipment	EU Directive 2011/65/EU (8 June 2011)

Title: ngVLA System Electronics Specifications	Owner: J. Jackson	Date: 2021-01-14
NRAO Doc. # 020.10.15.10.00-0008-REQ		Version: A

Ref. No.	Document Title	Rev./Doc. No.
RD37	RoHS 3 – EU Directive Amending Annex II to Directive 2011/65/EU as regards the list of restricted substances – effective 22 July 2021	EU Directive 2015/863 (31 March 2015)
RD38	Non-Electronic Parts Reliability Data	NPRD-95
RD39	Machinery's Handbook, 31st Edition; Erik Oberg, et al; March 2020	ISBN-13 : 978-0831141318
RD40	Fastener Black Book, 1st Edition, May 2014	ASIN: B00KC58Z3M
RD41	Electromagnetic compatibility (EMC) – Part 4-2: Testing and measurement techniques – Electrostatic discharge immunity test	IEC 6100-4-2:2008
RD42	US General Services Administration Federal Acquisition Regulation (FAR)	Federal Acquisition Regulation 2019
RD43	ANSI Z136 Standards for Implementing a Safe Laser Program	ANSI Z136.1 through .9
RD44	Safety of Laser Products – Part 1: Equipment Classification and Requirements	IEC 60825-1:2014
RD45	International Standard: Protection Against Lightning	IEC 62305:2010

2.3 Driving Requirements

The following ngVLA key system requirements are fundamental to many of the requirements and guidelines covered in this document and are listed here for reference:

- Array Element MTBF SYS2402: The antenna, antenna electronics, array infrastructure, and signal processing system shall be designed with an expected number of failures to be less than four per array element per year. (Traceability – STK1802, STK0101)
- Safety Specification SYS2700: All designs shall comply with the Level-I System Safety Specification 020.80.00.00.00-0001-REQ
- Design Life SYS2801: The system shall be designed for an expected operational life of no less than 20 years, where the operational life is defined to start at the full operations milestone and closeout of the construction project. (Traceability – STK0303)
- Optimization for Maintenance SYS3202: Tools shall be provided for the organization of the maintenance and repair teams in order to maximize the efficiency of time spent on antenna visits and repair of equipment. (Traceability – STK5003, STK5005)

3 Line Replaceable Units

Consistent with the goal of efficient maintenance, most of the ngVLA electronics will be packaged as Line Replaceable Units (LRU), where LRU modules are interchanged at the antenna or in the equipment rooms. When installed and connected to the Monitor and Control (M&C) System, the individual LRUs will electronically self-identify providing status, configuration information, hardware and firmware versions, and location in the array. [AD03]

The ngVLA will employ a scheduled maintenance program for the antennas with a goal of minimizing repeat and unscheduled visits to each antenna. The program will be structured to incorporate both reliability data on critical components and actual performance of equipment. For example, cryogenic refrigerators and other components with a known service life will be replaced at a regularly scheduled maintenance intervals, regardless of their current operating condition. Components may also be replaced if analysis of their performance predicts an imminent failure.

Title: ngVLA System Electronics Specifications	Owner: J. Jackson	Date: 2021-01-14
NRAO Doc. # 020.10.15.10.00-0008-REQ		Version: A

Parameter	Req. #	Value	Traceability
LRU Designation	ETR0301	An item replaceable at the operational location shall	SYS2403
		be designated as a Line Replaceable Unit (LRU).	

4 Physical and Online Identification

4.1 Marking

References for Sections 4.1 and 4.2:

- MIL-STD-13231: Department of Defense Standard Practice: Marking of Electronic Items (02 Nov 1999) [RD04] This standard specifies the DoD's uniform marking requirements for electronic items.
- MIL-DTL-15024: Detail Specification: Plates, Tags, and Bands for Identification of Equipment, General Specification for (28 Nov. 1997) [RD05] This performance specification covers the physical characteristics of plates, tags, and bands (identification devices) used for identification of equipment. Examples of information to be marked on the identification devices are covered in the applicable specification sheets.
- MIL-P-19834: Detail Specification: Plates, Identification, or Instruction, Metal Foil, Adhesive Backed General Specification for (06-Jul-2006) [RD06] — This detail specification covers adhesive-backed metal foil identification or instruction plates for use as internal and external equipment identification or instruction.

All LRUs must be marked with a physical label containing a clear set of visible markings. The information required includes (but is not limited to):

- 1. The model number/name of the LRU as defined in MIL-STD-13231 [RD04]
- 2. The serial number of the LRU as defined in MIL-STD-13231 [RD04]
- 3. The hardware revision level as defined in MIL-STD-13231 [RD04]
- 4. The unique part number or a fully qualified CID number as defined in Section 3, ngVLA Documentation Management Plan (020.10.10.10.00-0001-PLA). This provides a reference to all documentation of the associated LRU.

This label will be placed on an accessible external surface of the LRU. These permanent markings must be impervious to the hardware's operational, storage, transport, and maintenance environments as defined in US DoD Standards MIL-DTL-15024 [RD05] and MIL-P-19834 [RD06]. A complete history and status, with a comparable level of detail, shall be readily available from the database under which they are managed.

Parameter	Req. #	Value	Traceability
LRU Physical	ETR0401	Each LRU shall be marked with the model	SYS2406, SYS3900,
Marking Label		number/name, serial number and hardware	SYS3910, SYS3404,
Contents		revision level as defined in MIL-STD-13231	SYS3600
		[RD04] and the unique part number (as defined	
		in Section 3, ngVLA Documentation Management	
		Plan (020.10.10.10.00-0001-PLA).	
LRU Physical	ETR0409	The attached LRU Physical Marking Label shall	ENV0341, ENV0342,
Marking Label		comply with MIL-DTL-15024 [RD05] to ensure	ENV0343, ENV0344,
Ruggedness		durability and longevity of the label.	ENV0562, ENV0591,
			SAF0059, SYS2700,
			SYS2801, SYS3202

Title: ngVLA System Electronics Specifications	Owner: J. Jackson	Date: 2021-01-14
NRAO Doc. # 020.10.15.10.00-0008-REQ		Version: A

4.2 Physical Tracking

Electronic items that require tracking will also be uniquely identified through a reliable and standardized tracking system. A unique identification device will be attached to the electronic device at the start of each unit's construction and can be used as the assembly, testing, and installation traveler. Examples include a printed bar code or electronic RFID tags that can be read by portable handheld readers.

Unique Identification (UID) and Item Unique Identification (IUID) data are stored in or on this device. These IDs are part of the identification marking process mandated by the United States Department of Defense (DoD) as defined in [RD04], [RD05], and [RD06] (listed above). The UID and IUID are permanent identifications used to give military property and Government-Furnished Property (GFP) the necessary Unique Item Identification (UII) information. UID, UII, and IUID data used in the ngVLA project will be generated by NRAO.

Parameter	Req. #	Value	Traceability
LRU Physical	ETR0402	Each LRU shall be equipped with a standardized	SYS3900, SYS3910,
Tracking		physical tracking label or device, e.g., bar code or	SYS3902, SYS2406,
Device		RFID tags, which provides for quick and unique	SYS3700, SYS3600
		identification via a UID and IUID as described in US	
		DoD Standard MIL-P-19834 [RD06]. UID and IUID	
		data used in the ngVLA project will be generated by	
		NRAO.	
LRU Tracking	ETR0405	The physical tracking label and/or device attached	SYS2801, SYS3900,
Label & Tag		to each LRU shall conform to the specifications	SYS3910, SYS3600
Specifications		outlined in US DoD Standards MIL-DTL-15024	
		[RD05] and MIL-P-19834 [RD06].	

4.3 Remote Monitor and Control Identification

To aid in configuration control, maintenance tracking, and planning of maintenance visits, all devices (electronic equipment and subsystems) with any connectivity to the M&C System shall identify itself when polled via the M&C network. At a minimum, information reported shall include

- I. Module/Model Number
- 2. Serial Number
- 3. CID Number which leads to all documentation
- 4. Hardware Revision Level
- 5. Software Revision Levels (if applicable)
- 6. Firmware Revision Levels (if applicable)
- 7. UID and IUID from the physical tracking device

At the discretion of the designer or to meet other array reporting requirements, more detailed data such as calibration files may also be reported when polled.

Title: ngVLA System Electronics Specifications	Owner: J. Jackson	Date: 2021-01-14
NRAO Doc. # 020.10.15.10.00-0008-REQ		Version: A

Parameter	Req. #	Value	Traceability
Remote	ETR0403	Any device with any connectivity to the M&C system	SYS2406,
Identification		shall identify itself when polled via the M&C network.	SYS3202,
		Minimum information to be reported includes	SYS3600,
		I. Module/Model Number	SYS3602,
		2. Serial Number	SYS3603
		3. CID Number which leads to all documentation	
		4. Hardware Revision Level	
		5. Software Revision Levels (if applicable)	
		6. Firmware Revision Levels (if applicable)	
		7. UID and IUID from Physical tracking tag or device	

4.4 Non M&C LRU Identification

Devices declared as LRUs that would not ordinarily be connected to the M&C system shall provide a mechanism of identification readable by a nearby M&C connected device. An example of a device that would need this feature is a cryogenic refrigerator. The readable ID shall be implemented as a serial non-volatile memory.

Parameter	Req. #	Value	Traceability
LRU Remote ID	ETR0404	LRUs that would not ordinarily be connected to the	SYS2406,
for devices with		M&C system shall provide unique identification via a	SYS3202
no direct M&C		non-volatile memory readable by a nearby M&C	
connection		connected device. Information to be provided	
		includes (but is not limited to):	
		I. Module/Model Number	
		2. Serial Number	
		3. CID Number which leads to all documentation	
		4. Hardware Revision Level	
		5. Software Revision Levels (if applicable)	
		6. Firmware Revision Levels (if applicable)	
		7. UID and IUID from the physical tracking device	

4.5 Labels for Physical Safety

All LRUs shall include at least one clearly visible label indicating the weight of the LRU in pounds. The weight in kilograms can also be added at the designer's discretion. If the LRU weighs in excess of 50 lbs (22.68 Kg), a clearly visible label indicating "Multiple Person Lift Required" along with the number of persons required shall be included. Additionally, clearly visible labels shall be included identifying the presence and location of all lift or hoist points on the LRU.

Parameter	Req. #	Value	Traceability
LRU Weight	ETR0406	All LRUs shall include at least one clearly visible label	SYS2700,
Labels		indicating the weight of the LRU in pounds. The label	SYS3202,
		shall be compliant with applicable standards at the	SAF1050
		time of installation.	

Title: ngVLA System Electronics Specifications	Owner: J. Jackson	Date: 2021-01-14
NRAO Doc. # 020.10.15.10.00-0008-REQ		Version: A

Parameter	Req. #	Value	Traceability
LRU Multiple	ETR0407	If the LRU weighs in excess of 50 lbs (22.68 Kg), a	SYS2700,
Person Lift		clearly visible label indicating "Multiple Person Lift	SYS3202,
Labels		Required" along with the number of persons required	SAF1050
		shall be included. The label shall be compliant with	
		applicable standards at the time of installation.	
Lift and Hoist	ETR0408	Clearly visible label(s) shall be included identifying the	SYS2700,
Points		presence and location of all lift or hoist points on the	SYS3202,
		LRU. The label shall be compliant with applicable	SAF1050
		standards at the time of installation.	
Hot Connect &	ETR0410	In situations where disconnecting cables or pulling of	SYS2700,
Disconnect		equipment with power on can cause damage, clearly	SYS3202,
Warning Labels		visible labels shall be applied to warn on this condition.	SAF0059

5 Electrostatic Discharge Protection

5.1 LRU and Sub-Assembly Requirements

Each LRU will be evaluated to determine the susceptibility to damage from Electrostatic Discharge (ESD). The ESD sensitive components classification (ESD Class) shall be determined for each LRU design. This susceptibility classification can help to identify:

- ESD vulnerabilities of the hardware that may require design changes or additions to the hardware which harden the resistance to ESD.
- The ESD protection precautions necessary during assembly, testing, maintenance, and handling, i.e. when the enclosure is open and internal hardware is exposed.
- The ESD protection necessary during storage, transport and installation of the hardware, i.e. when the enclosure is sealed and the hardware is protected within.

Testing and evaluation shall be performed on a few sacrificial qualification units built for testing purposes. Production units destined to be installed in the array as operational hardware will not be subject to ESD testing due to potential degradation of performance and life expectancy.

Testing shall be in accordance with IEC 61000-4-2:2008 (RD41), "Electromagnetic compatibility (EMC) – Part 4-2: Testing and measurement techniques – Electrostatic discharge immunity test".

Parameter	Req. #	Value	Traceability
ESD Low Air	ETR0501	Qualification units of all enclosed ngVLA electronic LRUs	SYS2402,
Discharge		shall be tested to conform to MIL-STD-461G CS118 with	EMC0471
Susceptibility		an air discharge level up to 8kV while meeting	
Testing		performance criteria A. Testing to this discharge level at	
		ESD Compliance Level 4 per IEC 61000-4-2 will also be	
		accepted. Specific exceptions will be considered where	
		components or sub-assemblies are present that are very	
		high value or are known to be vulnerable. In these cases,	
		evaluation will be through analysis of the design and a	
		"best attempt" should be made in design to protect these	
		vulnerable components in the LRUs.	

Title: ngVLA System Electronics Specifications	Owner: J. Jackson	Date: 2021-01-14
NRAO Doc. # 020.10.15.10.00-0008-REQ		Version: A

Parameter	Req. #	Value	Traceability
ESD High Air	ETR0505	Qualification units of all enclosed ngVLA electronic LRUs	SYS2402,
Discharge		shall be tested to conform to MIL-STD-461G CS118 with	EMC0472
Susceptibility		an air discharge level up to 15kV while meeting	
Testing		performance criteria B. Testing to this discharge level at	
		ESD Compliance Level 4 per IEC 61000-4-2 will also be	
		accepted. Specific exceptions will be considered where	
		components or sub-assemblies are present that are very	
		high value or are known to be vulnerable. In these cases,	
		evaluation will be through analysis of the design and a	
		"best attempt" should be made in design to protect these	
		vulnerable components in the LRUs.	
ESD Direct	ETR0506	Qualification units of all enclosed ngVLA electronic LRUs	SYS2402,
Contact		shall be tested to conform to MIL-STD-461G CS118 with	EMC0473
Discharge		a direct contact discharge level up to 8kV while meeting	
Susceptibility		performance criteria A. Testing to this discharge level at	
Testing		ESD Compliance Level 4 per IEC 61000-4-2 will also be	
		accepted. Specific exceptions will be considered where	
		components or sub-assemblies are present that are very	
		high value or are known to be vulnerable. In these cases,	
		evaluation will be through analysis of the design and a	
		"best attempt" should be made in design to protect these	
		vulnerable components in the LRUs.	

5.2 Protection of Workspaces and Operational Environments

Ultimately, standards for ESD protection are applied to the environments and procedures utilized where the equipment is built, serviced, stored and installed vs being applied to the equipment itself. This is where the maximum vulnerability occurs. For these purposes ngVLA Electronics will be built in facilities meeting one of two standards. It is understood existing facilities could be designed to meet one or the other of these and that the guidelines provided by either meet the needs of the ngVLA project.

- Mil-STD-1686C (RD08), Military Standard: Electrostatic Discharge Control Program for Protection of Electrical and Electronic Parts, Assemblies, and Equipment (excluding electrically initiated explosive devices) (25-Oct-1995) [supersedes DoD-std-1686]
- Mil-HDBK-263b (RD09), Military Handbook: Electrostatic Discharge (ESD) Control Handbook for Protection of Electrical and Electronic Parts, Assemblies, and Equipment (excluding electrically initiated explosive devices) (31 Jul 1994)
- ANSI/ESD S20.20-2014 (RD22): Protection of Electrical and Electronic Parts, Assemblies, and Equipment (excluding Electrically Initiated Explosive Devices)

Parameter	Req. #	Value	Traceability
ESD	ETR0502	ESD protection of equipment and workspaces shall be	SYS2402
Protection		based on USDOD MIL-STD-1686C (RD08) and MIL-	
		HDBK-263B (RD09) or ANSI/ESD S20.20-2014 (RD22)	

Title: ngVLA System Electronics Specifications	Owner: J. Jackson	Date: 2021-01-14
NRAO Doc. # 020.10.15.10.00-0008-REQ		Version: A

5.3 Storage and Shipping of ESD Sensitive Hardware

Equipment and components sensitive to damage from ESD must be packaged, shipped, and stored in ESD protective packaging. These materials act as a Faraday cage keeping the packaging and everything else enclosed at the same potential. LRUs that consist of metal enclosures with external connectors may use shorting plugs or conductive caps in lieu of an outer wrapping or package. The items shall be closed and opened at ESD safe workstations as described in Section 5.2.

Parameter	Req. #	Value	Traceability
ESD	ETR0503	Equipment and components sensitive to damage from	SYS3904
Packaging and		Electrostatic Discharge (ESD) shall be packaged, shipped	
Storage		and stored in ESD protective packaging and/or equipped	
		with shorting plugs and conductive caps on all external	
		connections. These items shall only be sealed and opened	
		at ESD safe workstations.	

5.4 Buildup of Static Charge

Equipment and assemblies made using dielectric materials or coated with nonconductive coatings can build up a static charge due to interaction with the atmosphere, as a result of mechanical movement, or due to electrical flow in and out of the device. These charges can ultimately be damaging to the system or, in extreme conditions, represent a hazard or startling event to an individual operating or servicing the equipment.

Parameter	Req. #	Value	Traceability
Prevention and	ETR0504	Equipment and assemblies made using dielectric	SYS2402,
Discharge of		materials or coated with nonconductive coatings	SYS2801,
Electrostatic		shall be designed to prevent build up or to dissipate	SYS2700,
Charge Build-Up		excessive electrostatic charge.	SAF0710

6 Radio Frequency Interference/Electro-Magnetic Compatibility

In a radio telescope such as the ngVLA, Radio Frequency Interference (RFI) and Electro-Magnetic Compatibility (EMC) have a major impact on the performance of the telescope. The RFI/EMC requirements for the ngVLA are spelled out in [AD05], "System EMC and RFI Mitigation Requirements." There are multiple categories to this puzzle which have different implications, level of harm, and solutions:

- Coherent Self-Generated RFI: Hardware that is part of the array can generate coherent noise that is coupled into the astronomical data either directly through the Front Ends or coupled in by secondary paths such as power supplies, grounds, reference signals, or M&C signals. These noise sources are coherent between antennas and are usually synchronized either to the array LO/Reference system or to the power grid. These signals can be very destructive to the astronomy even at very low levels.
- Incoherent Self-Generated RFI: Hardware that is part of the array can also generate incoherent noise that is coupled into the astronomical data either directly through the Front Ends or coupled in by secondary paths such as power supplies, grounds, reference signals, or M&C signals. These signals are not coherent between antennas and are usually generated by independent clocks in microprocessors, COTS products, the antenna drive system, standalone computers, and phones. These signals mainly cause problems when they are strong enough to affect the linearity of the system. They can be tolerated at much higher levels than coherent signals.

Title: ngVLA System Electronics Specifications	Owner: J. Jackson	Date: 2021-01-14
NRAO Doc. # 020.10.15.10.00-0008-REQ		Version: A

• External RFI sources: This category essentially covers everything else, including signals produced outside of our hardware and not under ngVLA control. The most common sources are terrestrial and satellite communications, the power grid, automobiles, aircraft, etc. These can be very strong and can be coherent across many antennas to the entire array.

To minimize RFI and EMC at the ngVLA, it is required that designers follow the Requirements spelled out in "ngVLA System EMC and RFI Mitigation Requirements" [AD05].

Parameter	Req. #	Value	Traceability
EMC/RFI	ETR0601	RFI/EMC Requirements shall be in compliance with	EMC0310, EMC0321,
Mitigation in		and tested per the ngVLA System Electromagnetic	EMC0322, EMC0323,
Designs		Compatibility and Radio Frequency Interference	EMC0326, EMC0327,
		Mitigation Requirements	EMC0328, SYS2104,
			SYS2106, SAF0800

7 Printed Circuit Boards

The ngVLA Electronics systems will contain numerous Printed Circuit Boards (PCBs). For reliability, maintainability, and documentation purposes, it is critical that these PCBs all be designed to a consistent set of standards. For the ngVLA project, PCBs will adhere to the current version of IPC standard, IPC-A-600K: Acceptability of Printed Circuits Boards [RD10].

PCBs shall be compliant with RoHS 2/3 standards as described in:

- RoHS 2: EU Directive on the restriction of the use of certain hazardous substances in electrical and electronic equipment EU Directive 2011/65/EU (8 June 2011).
- RoHS 3: EU Directive Amending Annex II to Directive 2011/65/EU as regards the list of restricted substances (effective 22 July 2021) EU Directive 2015/863 (31 March 2015).

Exemptions from IPC and RoHS requirements will be considered where lifecycle, manufacturability, and/or reliability issues are a concern. Requests for exemptions must be submitted by the Responsible Engineer with justifications to the ngVLA project Engineering Change Control Board (ECCB).

It is unlikely that COTS PCBs will meet all of these requirements. In the case of COTS PCBs, these requirements become recommendations. The subsystem designer shall make a best attempt to procure COTS equipment with PCBs that meet as many of these standards as possible.

Parameter	Req.#	Value	Traceability
Printed Circuit	ETR0701	PCBs shall be designed and manufactured to meet	SYS2402,
Board IPC Standard		IPC Standard IPC-A-600K: Acceptability of Printed	SYS2805
Compliance		Circuits boards (RD10)	
Printed Circuit	ETR0712	PCBs shall be designed and manufactures to meet	SYS2803
Board RoHS		RoHS 2 and 3 standards as described in EU	
Compliance		Directive 2011/65/EU (8 June 2011) and EU	
		Directive 2015/863 (31 March 2015)	

Title: ngVLA System Electronics Specifications	Owner: J. Jackson	Date: 2021-01-14
NRAO Doc. # 020.10.15.10.00-0008-REQ		Version: A

7.1 Printed Circuit Board Types

There are three major types of printed circuit board that could likely be used in ngVLA Electronics:

- 1. **Rigid Printed Circuit Boards** are the most common type and will cover the majority of the electronics in the system. These are made of one to many layers of a rigid material such as fiberglass (FR-4), other composites, and in some cases, exotic material such as ceramic or glass.
- 2. **Flexible Printed Circuit Boards** are mostly used for interconnect between boards where high reliability, ease of assembly, and/or motion are required. These may be single or multilayer and are usually made from a polyimide such as Kapton. A few small surface mount components can be included on these but that can result in a delicate assembly.
- 3. The third option is a **Rigid/Flex Hybrid** that uses rigid PCBs interconnected by a flex layer that is part of the PCB stackup of the rigid boards. This can result in a reliable, easy to assemble design.

7.2 Materials

7.2.1 PCB Substrate

Rigid PCBs shall be made from materials covered in IPC Specification IPC-4101E [RD11]. Most rigid PCBs will be FR-4 type materials. FR-4 (or **FR4**) is a NEMA-grade designation for glass-reinforced epoxy laminate material. FR-4 is a composite material composed of woven fiberglass cloth with an epoxy resin binder that is flame resistant (self-extinguishing). FR-4 does not specify specific material, but instead a grade of material, as defined by NEMA LI I-1998 specification [RD29]. Materials meeting this specification are suitable for most ngVLA PCBs in the ngVLA System. Numerous manufacturers make materials to this specification, many with specific properties emphasized. It is left to the discretion of the designer to decide which of these materials best fits a particular design from the perspective of performance and/or cost.

Flexible PCBs shall be made from a polyimide material. These materials are covered in IPC Standard IPC-4202 [RD12].

Specialized high-performance microwave, optical, or extremely high-speed digital circuits frequently require more exotic dielectric materials. Numerous examples of these exist and it is left to the discretion of the designer to select a material that best fits their application in these special cases.

Parameter	Req. #	Value	Traceability
Rigid Printed	ETR0702	Rigid PCBs shall be manufactured from materials	SYS2402,
Circuit Board		specified in and meeting IPC Specification IPC-4101E	SYS2805
Material		(RDII). The default material is an FR-4 type material	
		defined by NEMA LI I-1998 (RD29).	
Flexible Printed	ETR0703	Flexible PCBs shall be manufactured from materials	SYS2402,
Circuit Board		specified in and meeting IPC Specification IPC-4202	SYS2805
Material		(RD12).	

7.2.2 PCB Plating

Electroless Nickel Immersion Gold (ENIG) is a type of surface plating used on printed circuit boards. ENIG consists of an electroless nickel plating covered with a thin layer of immersion gold, which protects the nickel from oxidation. ENIG has several advantages over more conventional (and cheaper) surface plating such as HASL (solder), including excellent surface planarity (particularly helpful for PCBs with large BGA packages), good oxidation resistance, RoHS compliance, and usability for untreated contact surfaces such as membrane switches and contact points. Printed Circuit Boards in the ngVLA electronics system shall use ENIG plating.

Title: ngVLA System Electronics Specifications	Owner: J. Jackson	Date: 2021-01-14
NRAO Doc. # 020.10.15.10.00-0008-REQ		Version: A

Specialized high-performance microwave or extremely high-speed digital circuits frequently require more exotic materials. Numerous examples of these exist and it is left to the discretion of the designer to select a material that best fits their application in these special cases.

Parameter	Req. #	Value	Traceability
Printed Circuit	ETR0704	Rigid PCBs shall utilize an Electroless	SYS2402,
Board Plating/		Nickel/Immersion Gold (ENIG) surface finish specified	SYS2805
Surface Finish		in and meeting IPC Specification IPC-4552 [RD30].	
Material		Specialized high performance designs which require	
		specific or advanced plating materials are exempt from	
		this requirement.	

7.2.3 Solder Mask Material

Parameter	Req. #	Value	Traceability
Printed Circuit	ETR0705	Rigid PCBs shall utilize solder mask specified in and	SYS2402,
Board Solder		meeting IPC Specification IPC-SM-840E	SYS2805
Mask Material		"Qualification and Performance Specification of	
		Permanent Solder Mask" [RD31].	

7.3 Markings

7.3.1 Solder Mask Color

Printed circuit boards that utilize a solder mask can be made using numerous colors for the solder mask. This technique can be used to quickly identify which revision of a board is in a particular piece of equipment. In the ngVLA, it is required that when a major revision is made to a production circuit board, the new version shall be manufactured using a different color solder mask not previously used for this particular PCB. The sequence chosen for these colors shall be:

Version/Rev	Solder Mask Color	
A	Green	
В	Blue	
С	Red	
D	Orange	
E	White	
F	Black	

COTS PCBs and PCBs not using a solder mask are excluded from this requirement.

If a PCB goes beyond Revision F, the sequence repeats.

Title: ngVLA System Electronics Specifications	Owner: J. Jackson	Date: 2021-01-14
NRAO Doc. # 020.10.15.10.00-0008-REQ		Version: A

Parameter	Req. #	Value		Traceability
Printed Circuit	ETR0707	Rigid Production PCBs usi	ng a solder mask shall	SYS2805,
Board Solder		utilize a solder mask color	in the following sequence:	SYS3202
Mask Color		Version/Rev	Solder Mask Color	
		A	Green	
		В	Blue	
		С	Red	
		D	Orange	
		E	White	
		F	Black	
		For PCBs beyond Revision	F, the sequence repeats.	

7.3.2 PCB Overlay Legend and Marking Ink Material and Color

Every PCB should contain a silk screen text overlay on the board. This text will be printed in white, yellow, or black silk screen epoxy that is impervious to any possible cleaning solution the board may be subject to. The ideal selection of color is determined by the visibility of the printing on the solder mask color chosen.

Text portions of this overlay shall be in a simple font, large enough to be clearly printed utilizing the vendor's design rules and readable by assemblers and technicians that may be handling the PCB.

For all components that must be installed in a particular orientation, markings clearly showing this shall be printed on the PCB for use by assemblers and service technicians. Large complex components like Ball Grid Arrays (BGAs) and Quad Flat Packs (QFPs) shall contain fiducial markings necessary for alignment of assembly equipment.

COTS PCBs are excluded from this requirement. PCBs too small or dense to permit inclusion of useful or readable markings, or where inks may interfere with RF properties of the board, are exempt from this requirement.

Parameter	Req. #	Value	Traceability
Printed Circuit	ETR0706	Rigid PCBs shall utilize legend and marking inks	SYS2402,
Board Marking		specified in and meeting IPC Specification IPC-4781	SYS2805
Material		"Qualification and Performance Specification of	
		Permanent, Semi-Permanent and Temporary Legend	
		and/or Marking Inks" (RD32). PCBs too small or	
		dense to permit inclusion of useful or readable	
		markings, or where inks may interfere with RF	
		properties of the board, are exempt.	
Printed Circuit	ETR0716	Rigid PCBs shall include fiducials and other alignment	SYS2402,
Board Fiducials		markings necessary for machine installation of	SYS3202
& Alignment		alignment critical components such as Ball Grid	
Markings		Array (BGA) packages.	

7.3.3 Identification Information

All ngVLA PCBs shall be clearly labeled with the CID number to find all associated documents for the board, including manuals, schematics, and artwork and production files. The information shall also include the revision level and the date the design or revision was completed. Additional information useful to the

Title: ngVLA System Electronics Specifications	Owner: J. Jackson	Date: 2021-01-14
NRAO Doc. # 020.10.15.10.00-0008-REQ		Version: A

designer, assembler, or service technician is allowed and encouraged. An approved NRAO logo shall be on the board. Additional identifying logo(s) for the project, individual designer(s), group, or organization responsible for the PCB are also allowed providing space is available. However, at least one dimension must be the same size as or smaller than the NRAO logo. Provision for a permanent serial number shall be provided. This can be a sequential number applied by the PCB vendor during fabrication or a block allowing for permanent marking or engraving of a board serial number during initial assembly.

Exemptions to identification markings will be considered in cases where board size or physical restrictions exist. Requests for exemptions must be submitted by the designer with justifications to the ngVLA project ECCB.

COTS PCBs are excluded from this requirement.

Parameter	Req. #	Value	Traceability
PCB	ETR0708	PCBs shall be marked with the PCB name/function, CID	SYS3600
Identification		number (to find all associated documents for the board),	
Markings		the revision level and the date the design or revision was	
		completed. Additional information useful to the	
		designer, assembler, or service technician is allowed and	
		encouraged.	
PCB Logos	ETR0713	All ngVLA project PCBs shall include the NRAO logo	SYS3600,
		that is approved at the time the PCB is designed. PCB	IP protection
		designers are also permitted to include additional logo(s)	
		identifying the project and/or their organization,	
		however, at least one dimension must be the same size	
		or smaller than the NRAO logo.	

7.4 High Frequency/Low Emission Design Requirements for PCBs

Given the high emphasis on RFI and EMC in the ngVLA system, it is critical that PCBs be designed for the best high-frequency performance, lowest RFI emission, and best immunity to electromagnetic interference possible. While it is true that the vast majority of PCBs in the ngVLA Electronics System will be packaged in RFI-shielded enclosures, those enclosures should not be considered the primary line of defense. To meet the extremely stringent system requirements and specifications, a layered approach is absolutely necessary. This starts with the design of the PCBs and selection of components on them. Careful attention shall be applied to the detailed design of the boards. Excellent references and analysis tools exist to ensure that the PCBs are designed for minimum emission and susceptibility, and these usually also result in maximum performance.

Given the wide range of possibilities, it is not practical to require a specific standard for these design parameters. The PCB designer shall analyze their designs and take steps to optimize PCB performance and minimize RF emission. They shall be prepared to discuss their analyses and the techniques used to address the results in the design reviews for their PCBs and subsystems.

PCBs designed for use in the central shielded chamber(s) are exempted. However, bear in mind that design for low emission and design for good RF/high-speed performance usually go hand in hand, therefore this analysis is still recommended.

Title: ngVLA System Electronics Specifications	Owner: J. Jackson	Date: 2021-01-14
NRAO Doc. # 020.10.15.10.00-0008-REQ		Version: A

Parameter	Req. #	Value	Traceability
PCB Optimum	ETR0714	The PCB designer shall analyze their designs and	EMC0310,
High-Frequency		take steps to optimize PCB performance and	EMC0322,
Performance		minimize RF emission. They shall be prepared to	SYS2402
and Low		discuss their analysis and the techniques used to	
Emission		address the results in the design reviews for their	
		PCBs and subsystems. PCBs designed to operate in	
		the central shielded chambers are exempt from this	
		requirement but the analysis is still recommended.	

7.5 Test and Maintainability of PCBs

Due to the long design life of the ngVLA, PCBs need to be designed with service and maintainability in mind. The use of adequate test points, proper labeling, indicator LEDs, boundary scan technologies like JTAG, etc., is key to serviceability.

On PCBs utilizing BGA Integrated Circuit (IC) packages or similar components, designers and production teams shall procure sufficient extra PCBs and components to allow for creation of BGA assembly and rework station soldering profiles. These are essential for reliable production and to support long-term maintenance.

Many PCBs designed for the ngVLA project will be produced in sufficient quantity where automated assembly and test will be required in manufacturing. If more than 50 of a specific PCB type will be produced or if it is known automated assembly and/or test capability is required, then the PCB shall be designed with the features needed to support these processes. Features that may be needed include, but are not limited to:

- Fiducials and other markings to assist with optical alignment of the board and components
- Clearances around the board perimeter to allow for machine handling of the PCB
- Minimized use of through hole components or other parts that will require manual installation
- Use of well-placed test connections for JTAG, boundary scan testing, device programming, etc.

Parameter	Req. #	Value	Traceability
PCB Power	ETR0709	PCBs shall include labeled and accessible Test Points to	SYS3202
Supply Test		be used during development, maintenance and upgrades	
Points		to verify and/or adjust on-board produced supply	
		voltages.	
PCB FPGA	ETR0710	PCBs utilizing FPGAs shall incorporate test points	SYS3202
Test Points		and/or LED indicators connected to spare pins of the	
and/or		FPGA. These are needed, during development,	
Indicators		maintenance and upgrades to verify and debug	
		operation of FPGA firmware.	
PCB Critical	ETR0711	Signals on PCBs critical for verifying proper operation	SYS3202
Signal Test		of the board or calibrating the board shall be made	
Points		available on labeled test points.	
Solder Profiles	ETR0715	For PCBs containing BGA or similar packages, sufficient	SYS3202,
for BGA		spare PCBs and components shall be procured to be	SYS2801,
Packages		used for building soldering profiles for both assembly	SYS2805
		and long-term maintenance use.	

Title: ngVLA System Electronics Specifications	Owner: J. Jackson	Date: 2021-01-14
NRAO Doc. # 020.10.15.10.00-0008-REQ		Version: A

Parameter	Req. #	Value	Traceability
PCB Design for	ETR0717	If more than 50 of a specific PCB type will be produced	SYS2402,
Automated		or if it is known automated assembly and/or test	SYS3202
Assembly &		capability is required, then the PCB shall be designed	
Test		with the features needed to support these processes.	

8 Power, Grounding, and Circuit Protection

8.1 AC Power and Grounding System Design

All AC power and grounding must conform to the current US National Electric Code Requirements.

Parameter	Req. #	Value	Traceability
AC Power and	ETR0801	Design and installation of all AC Power and	SYS2700,
Grounding Design		Grounding wiring shall conform to US National	SYS2402,
		Electrical Code NFPA 70 (RD23).	SAFI170
AC Voltages	ETR0819		Local
Available		voltages shall utilize 480V/277V or 208V/120V 60	Interface
		Hz AC Power.	Requirement
AC Voltage	ETR0820	All equipment in the ngVLA powered from the AC	Local
Tolerance		line shall tolerate variations of +/- 10%.	Interface
			Requirement

8.2 DC Power and Grounding Physical Connection Design

Proper power and grounding connections are required to maintain safety, provide for low noise levels, and ensure good reliability.

Most LRUs will be provided DC power supply voltages from a separate isolated DC–DC converter based power supply running from either the AC line or a battery backed –48 VDC Power supply system. Remaining LRUs will be powered directly from the battery backed –48 VDC Power supply system and generate all needed voltages internally. These external DC voltages are not well regulated and should be considered as raw power. Each LRU will need to provide final internal regulation to all required voltages.

The LRU chassis or housing shall be electrically connected to the antenna structure. This should be accomplished using a proper grounding wire and not simply dependent on the mounting structure and hardware and/or the power supply returns for proper grounding. This wire can be a separate ground connection or included in the connectorized harness carrying power to the device.

Parameter	Req. #	Value	Traceability
DC Power &	ETR0802	Design and installation of all DC power	SYS2700, SYS2402,
Grounding		distribution and grounding wiring shall conform to	SYS2104, SYS2106,
Design		ngVLA System and RFI/EMC requirements.	SYS1503, SAF0070,
			SAF0080, SAF1170,
LRU Power	ETR0803	Input power to all LRUs shall be considered raw	SYS2700, SYS2402,
Input		power. Internal regulation and filtering is required.	SYS2104

Title: ngVLA System Electronics Specifications	Owner: J. Jackson	Date: 2021-01-14
NRAO Doc. # 020.10.15.10.00-0008-REQ		Version: A

Parameter	Req. #	Value	Traceability
LRU Physical	ETR0804	LRU chassis or housing shall be electrically	STK2700, SYS2402,
Ground		connected to the antenna structure using a proper	SYS2104, SYS2106,
		grounding wire. This wire can be a separate	SAF0070, SAF0080
		ground connection or included in the	
		connectorized harness carrying power to the	
		device.	
Power Supply	ETR0813	All power supplies shall have dedicated current	SYS2700, SYS2104,
Dedicated		return paths.	SYS2106, EMC0310,
Returns			EMC0322, SAF0070,
			SAF0080
Power Supply	ETR0814	Structural/Chassis components and signal grounds	SYS2700, SYS2104,
Returns		shall never be used as a power supply return path.	SYS2106, EMC0310,
Separate			EMC0322, SAF0070
from Ground			
Connections	ETR0815	In hardware designed to be hot swapped (i.e.	SYS2700, SYS2402,
in Hot Swap		installed or removed with power applied)	SYS1601, SYS1504,
Configuration		interconnect shall be designed such that safety	SYS1505, SYS4601,
		grounds, structural grounds, and power returns	SAF0070, SAF0080
		are connected first on installation and	
		disconnected last on removal.	
DC Voltages	ETR0821	All equipment in the ngVLA powered from DC	Local Interface
available		voltages shall utilize either the Main -48 VDC	Requirement
		power system or voltages produced by the PSU	
		modules, currently + 4.5 VDC, +/- 7.5 VDC and	
10.1/5.0	=== 0000	+/- 17.5 VDC. Equipment.	
– 48 VDC	ETR0822	Devices on the 48 VDC system shall tolerate	Local Interface
Tolerance	=== 0000	voltages from -42.0 VDC to -60.0 VDC.	Requirement
PSU Voltage	ETR0823	Devices powered from the PSU modules shall	Local Interface
Tolerance		tolerate +/- 10% of the rated voltages.	Requirement

8.3 Fusing and Protection

8.3.1 Over Current Protection

All LRU power supply inputs and outputs shall be properly current limited to prevent damage to the LRU, any other connected LRU, power supply subsystems, and all interconnect wiring. Protection devices shall be selected to:

- Prevent excessive current from damaging any component, connector, or wiring in the equipment or causing a fire.
- Minimize nuisance tripping or blowing of the protective device.
- Minimize long term degradation of the protection device and/or other components.

Bear in mind also that:

- Polysilicon fuses can degrade from continuous high current that is still below the rating of the device.
- Circuit breakers and PTC (self-resetting) fuses can degrade from repeated tripping or continuous operation too close to the trip point.

Title: ngVLA System Electronics Specifications	Owner: J. Jackson	Date: 2021-01-14
NRAO Doc. # 020.10.15.10.00-0008-REQ		Version: A

• Data sheets of protection devices frequently contain subtle details that, if not followed, can adversely affect protection capabilities and life expectancy of the device.

The design shall provide for easy access or renewal wherever in-place replacement or resetting of the protection device is required.

In the case where the protection device is also used as a power switch, it shall be a component designed specifically for the purpose of also being a switch (i.e. do not use a circuit breaker as a switch unless it is specifically designed for that purpose).

Due to the requirement to remotely diagnose failures in antenna electronics, the ngVLA M&C system shall be able to sense and report activated over-current protection devices wherever possible.

Parameter	Req. #	Value	Traceability
Overcurrent	ETR0805	All ngVLA Electronics systems shall implement overcurrent	SYS2402,
Protection		protection on LRUs.	SYS2700,
			SAF0150
Overcurrent	ETR0806	The ngVLA M&C system shall be able to monitor the state	SYS2402,
Protection		of overcurrent protection devices in an LRU. An exception	SYS2700,
Device		is if the circuit protection device activated disables the	SYS2701
Monitoring		LRUs M&C interface. In this situation, the LRU ceases to	
		communicate and should be presumed as bad by the	
		responding technician (i.e. they take a spare with them and	
		swap the LRU after evaluating M&C connections).	

8.3.2 Thermal Protection and Analysis

All LRUs shall contain features to remove power or go into a low-power operating mode if a temperature outside safe operating conditions is detected.

A two layered approach is desired. The device shall report an alert to array operations when temperature goes outside of a desired range but continue to operate, potentially giving operations and maintenance personnel time to react to and correct the problem. Then, at a second limit, the LRU shall protect itself with no external intervention required.

The designer shall analyze their designs and take steps to optimize thermal performance with a focus on proper cooling, thermal stability, and the elimination of hot spots. They shall publish these results in a memo and be prepared to discuss their analysis and the techniques used to address the results in the design reviews for their equipment and subsystems.

Parameter	Req. #	Value	Traceability
Thermal	ETR0807	ngVLA LRUs shall be thermally protected.	SYS2402,
Protection			SYS2700,
			SAF0100,
			SAF0770
Thermal	ETR0808	The LRU shall be able to monitor the state of thermal	SYS2402,
Protection		protection features. An exception is if the thermal	SYS2700,
Monitoring		protection activated disables the LRUs M&C interface. In	SYS2701
_		this situation the LRU ceases to communicate and should	
		be presumed as bad by the responding technician (i.e. they	
		take a spare with them and swap the LRU after evaluating	
		M&C connections).	

Title: ngVLA System Electronics Specifications	Owner: J. Jackson	Date: 2021-01-14
NRAO Doc. # 020.10.15.10.00-0008-REQ		Version: A

Parameter	Req. #	Value	Traceability
Thermal	ETR0816	The designer shall analyze their designs and take steps to	SYS2402,
Analysis		optimize thermal performance with a focus on proper	SYS2801,
,		cooling, thermal stability and the elimination of hot spots.	SYS2700,
		They shall publish these results in a memo and be prepared	SYS1601,
		to discuss their analysis and the techniques used to address	SYS4601,
		the results in the design reviews for their equipment and	SAF0100,
		subsystems.	SAF0770

8.4 Power System Operational Design

The operational design of the power system is critical to the reliability, safety, and autonomous functionality of the system. With 263 antennas, the ability of the system to survive and recover after power related incidents is of crucial importance. With this in mind, the electronics system in each antenna shall be able to be fully started up and shut down by technicians at the local site without interaction with operations or the central M&C System.

Additionally, after an unscheduled local power outage, the antenna's electronics system shall recover autonomously to a state suitable for normal operation on resumption of commercial power. If, after power is restored, a problem exists preventing the normal operation of the antenna, the system shall at least be at a state that is safe for the antenna, electronics, and any array or emergency personnel that arrive.

During a power outage, much of the electronics will continue to be powered by battery backup as described in Section 8.5. Over-current and thermal protection shall remain in full effect during the outage. During power outages, electronics may be placed into a low-power mode to minimize overheating and extend battery life. This low-power safe mode may be commanded via the local M&C system or, in the event of lost communications, enacted automatically within the LRU based on the combination of no commands received and monitored local conditions such as temperature or supply voltage. Battery condition shall be monitored and the backup system shut down before reaching a state of discharge that could permanently degrade the batteries.

All power supplies and LRUs shall contain power on indicators visible on the exterior surface of the unit. Indicators shall be blue LED(s). In RFI shielded enclosures, these may be implemented with small LEDs or light pipes.

Parameter	Req.#	Value	Traceability
On-Site	ETR0809	All ngVLA antenna electronics shall be able to be started	SYS2700,
Reset/Start-		up and shut down locally at the antenna site with no	SYS2402,
Up Sequence		intervention from operations, even in the event of no	SYS3202,
		M&C and/or audio communications between the	SYS3220,
		antenna and array operations.	SAF1060

Title: ngVLA System Electronics Specifications	Owner: J. Jackson	Date: 2021-01-14
NRAO Doc. # 020.10.15.10.00-0008-REQ		Version: A

Parameter	Req. #	Value	Traceability
Power Outage	ETR0810	All system electronics shall enact a sequential managed	SYS2700,
Behavior		shutdown procedure in response to power outages,	SYS2701,
		placing the system in a safe standby state in order to	SYS2402,
		avoid damage to hardware and minimize recovery time.	SYS2601,
		This low power safe mode may be commanded via the	SYS2602,
		local M&C system or, in the event of lost	SAF1060
		communications, enacted automatically within the LRU	
		based on the combination of no commands received and	
		monitored local conditions such as temperature or	
		supply voltage.	
Automated	ETR0811	All ngVLA antenna electronics shall enact procedures to	SYS2700,
Recovery		autonomously recover from a power outage in a state	SYS2701,
Sequence		suitable for normal operations, or at least to a safe state.	SYS2402,
			SYS2601,
			SYS2602,
			SAF1060
Power On	ETR0812	LRUs and power supplies shall contain externally visible	SYS2700,
Indicators		LED power indicators with "steady blue" indicating	SYS3220
		"nominal operation" and "blinking blue" indicating	
		"power is on but not meeting nominal conditions." In	
		RFI shielded enclosures, these may be implemented with	
		small LEDs or light pipes.	

8.5 Batteries

Batteries typically represent a reliability concern, require regular maintenance or replacement and can be a safety concern. With the exception of the Antenna —48 VDC power system, which will contain battery backup, and a commercial Uninterruptible Power Supply (UPS) that may be required for AC powered equipment, batteries shall not be used in the ngVLA system. Non-volatile memory should be used where possible. Real-time clocks should not be needed in the system since time is available via the M&C network.

Exemptions will be considered on a case by case basis. Requests for exemptions must be submitted by the designer with justifications to the ngVLA Project ECCB.

Parameter	Req. #	Value	Traceability
Battery Use	ETR0817	Batteries shall not be used in the ngVLA system except in	SYS2700,
		the case of the antenna –48 VDC power system and a	SYS2402,
		commercial UPS device for critical AC line powered	SYS2801
		equipment.	

8.6 Transient Protection

Based on past experiences with JVLA and ALMA, there is a need for transient protection on sensitive digital and analog I/O lines as well as power supply inputs on electronics. Transient Voltage Surge Suppression (TVSS) devices shall be used on sensitive analog and digital I/O signals and power supplies entering or exiting a LRU. RF and other signals that will be adversely affected by the inclusion of these devices are exempt from this requirement.

Title: ngVLA System Electronics Specifications	Owner: J. Jackson	Date: 2021-01-14
NRAO Doc. # 020.10.15.10.00-0008-REQ		Version: A

Parameter	Req. #	Value	Traceability
Transient	ETR0818	Transient Voltage Suppression devices shall be used on	SYS2402,
Protection of		sensitive analog and digital I/O signals and power supplies	SYS2403
LRU I/O &		entering or exiting a LRU. RF and other signals that will	
Power		be adversely affected by the inclusion of these devices	
Connections		are exempt from this requirement.	

8.7 Lightning and EMP Protection

Given the extent of the array and the prevailing environmental conditions, direct and nearby lightning strikes, causing a lightning electromagnetic pulse (LEMP), should be anticipated and mitigated in the electronics system design. The antenna and housed equipment shall be protected in any antenna orientation. Grounding systems shall be designed to minimize ground loops. Multi-point grounding is a necessity imposed by the need for Radio Frequency Interference (RFI) shielding, but the effects should be minimized in signal paths wherever possible.

The lightning protection system shall be designed to achieve Protection Level I as defined by IEC 62305-I—Protection against Lightning [RD45]. This level assures protection against 99% of strikes, with a residual risk of damage for strikes with parameters outside the defined range.

Parameter	Req. #	Value	Traceability
Lightning	ETR0824	The antenna, buildings, and housed equipment shall	SYS2402,
Protection-		be protected from both direct and nearby lightning	ENV0511
Structure &		strikes, achieving Protection Level 1 as defined in	
Housings		IEC 62305-1/3. [RD45]	
Lighting	ETR0825	Antenna and central electronics systems shall be	SYS2402,
Protection of		protected against Lightning Electromagnetic Impulse	ENV0512
Electronics		(LEMP) in accordance with IEC 62305-4. [RD45]	
Systems			

9 Electronics Reliability and Maintainability

One of the key general design goals of the ngVLA is to have a system that is over 10 times the size of the VLA operated at about 3x the annual operating cost of the VLA. This goal places a large focus on the design of the system. The ngVLA system requirements have an overall MTBF specification calling for the system to be designed with an expected number of failures to be less than four (4) per array element per year. An even tighter requirement exists for the central electronics. Reliability and ease of maintenance is paramount and must be a key focus of the ngVLA system design from the beginning. Spending the additional time and resources up front may increase development time and cost, but it will ultimately lead to lower long-term operating costs.

9.1 Design for Reliability

While there are no published standards for reliability of this type of electronic system, there are a number of handbooks and guidelines covering various design aspects and reliability analysis techniques:

- MIL-HDBK-217F(2), US Military Handbook: Reliability Prediction of Electronic Equipment [RD24]
- MIL-HDBK-251, US Military Handbook: Reliability/Design Thermal Applications [RD25]
- MIL-HDBK-338B, US Military Handbook: Electronic Reliability Design [RD26]

Title: ngVLA System Electronics Specifications	Owner: J. Jackson	Date: 2021-01-14
NRAO Doc. # 020.10.15.10.00-0008-REQ		Version: A

- NPRD-95 [RD38]
- IEC 61709 Ed.3.0 b:2017, Electronic Components Reliability Reference Conditions for Failure Rates and Stress Models for Conversion [RD27]

There are a number of key areas to consider, which will be covered in the following sections.

9.2 Component Selection

The selection of components used in the design is key to a reliable system.

9.2.1 Reputable Manufacturers and Proven Suppliers

Utilize components from known reputable manufacturers and proven suppliers. This reduces the possibility of substandard or counterfeit parts that are rampant in the electronics industry. It also simplifies procurement strategies and long-term component availability. Also, research components to determine if they are a likely risk for near-term obsolescence.

Parameter	Req. #	Value	Traceability
Component	ETR0901	Components shall be sourced from reputable,	SYS2402, SYS2601,
Sources		proven manufacturers, vendors, and/or distributors	SYS2602, SYS2801,
		as determined in the purchase requisition process.	SYS2805, SYS3702
		The US Government GSA Federal Acquisition	
		Regulations (FAR) [RD42] in effect at the time of	
		purchase shall be followed where applicable.	

9.2.2 Standard ngVLA Libraries of Parts

Wherever possible, components shall be from standard project libraries of parts. If a component is required that is not in these libraries, that component shall be added to a standard library along with any pertinent data. This is especially critical if the component can be used in multiple places in the system.

Using common parts libraries enables the ngVLA project to keep track of a standard set of components used across the system. This has multiple benefits: reduced manufacturing and spare parts inventories, simplified procurement strategies, a database of component reliability data to be used in reliability analysis, and a well understood library of tested and proven simulation models, schematic symbols, PCB footprints, and 3D CAD models.

Parameter	Req. #	Value	Traceability
Standard Component	ETR0902	Managed libraries shall be kept of	SYS2402, SYS2601,
Libraries		commonly used electronic components	SYS2602, SYS2801,
		and hardware.	SYS2805

9.2.3 Utilize Components Designed and Specified for Their Environment

Some ngVLA components will have to operate or be stored under very harsh environmental conditions (temperature, humidity, etc.), and others will operate or be stored in very benign, environmentally controlled conditions. Components shall be chosen based on these conditions.

Title: ngVLA System Electronics Specifications	Owner: J. Jackson	Date: 2021-01-14
NRAO Doc. # 020.10.15.10.00-0008-REQ		Version: A

Parameter	Req. #	Value	Traceability
Component	ETR0903	Electronic and mechanical components used in	SYS2402, SYS2801,
Environmental		the ngVLA system shall always be used in	SYS2805, ENV0332,
Specifications		accordance with their specified environmental	ENV0333, ENV0581,
		specifications (storage/operation temperature,	ENV0582, ENV0571,
		humidity, altitude derating, corrosion resistance,	ENV0521, ENV0531,
		etc.)	ENV0342, ENV0344,
		·	ENV0532

9.3 Reliability Analysis

The ngVLA project will be utilizing reliability analysis software to analyze the expected reliability of electronics systems designed and built for the project. All designs shall be subject to this process. This analysis will be used to determine if a design meets the MTBF requirements of the project and to identify weaknesses in the design that could ultimately lead to increased maintenance costs. Weaknesses identified by this analysis shall be investigated by the lead designer of the hardware with two possible outcomes:

- Alternative components or design changes can be implemented to correct the shortcoming in the hardware.
- No suitable alternative exists and a waiver will need to be approved via an engineering change process.

Organizations external to NRAO can choose to implement this on their own or submit their design to NRAO for analysis.

A Reliability, Availability, Maintainability analysis shall be performed by each designer at the LRU level to locate weak design points and determine whether the design meets the Maintenance and Reliability requirements. ngVLA suggests to apply the Parts Count Method for predicting the reliability of the system as described in the MIL-HDBK-217F [RD24], but the designer may propose to use other methods. For non-electronic parts, the values of NPRD-95 [RD38] or data from manufacturers or other databases may be used.

Another, but more time-consuming (and considered more accurate) method, the Parts Stress Analysis Prediction, is also described in MIL-HDBK-217F [RD24]. This may be used if the results of the Parts Count Method do not comply with the Maintenance and Reliability requirements.

Some ngVLA antennas will be operated at an elevation of 2500m above sea level, where temperature and pressure might decrease the MTBF relative to that at low elevations. These conditions shall be taken into specific account in the reliability prediction by using the environmental factor given in MIL-HDBK-217F. The analysis shall result in estimates of the Mean Time Between Failures (MTBF) and the Mean Time to Repair (MTTR), assuming that scheduled preventive maintenance is performed.

The results of this analysis are a required part of the Design Review Process.

Title: ngVLA System Electronics Specifications	Owner: J. Jackson	Date: 2021-01-14
NRAO Doc. # 020.10.15.10.00-0008-REQ		Version: A

Parameter	Req. #	Value	Traceability
Reliability	ETR0904	A Reliability, Availability, Maintainability analysis shall be	SYS2402,
Analysis		performed by each designer at the LRU level to locate	SYS2801,
-		weak design points and determine whether the design	SYS2802,
		meets the Maintenance and Reliability requirements.	SYS2805
		ngVLA suggests to apply the Parts Count Method for	
		predicting the reliability of the system as described in the	
		MIL-HDBK-217F [RD24], but the designer may propose to	
		use other methods. For non-electronic parts, the values of	
		NPRD-95 [RD38] or data from manufacturers or other	
		databases may be used. They shall publish these results in a	
		memo and be prepared to discuss their analysis and the	
		techniques used to address the results in the design	
		reviews for their equipment and subsystems.	

9.4 Design Robustness

Electronic systems for the ngVLA shall be operationally reliable and robust.

Designers shall take steps to ensure that the hardware behaves consistently and reliably under any conditions that may be realistically expected. This includes proving operation and/or survivability:

- At all expected temperature and humidity conditions (storage, transport, and operational)
- At any expected vibration condition (storage, transport, and operational)
- Over expected tolerances of DC power supply, analog, and digital input voltages
- Over expected variations of input signal timing
- In response to noise present on DC power supply, analog, and digital inputs
- Through component tolerances and expected variation in component specifications over their design life
- In the event of failure of any other connected equipment

Many tools are available to the designer to accomplish this task including (but not limited to):

- Mathematical analysis of the design by hand
- Simulation of the design by modeling, analog, digital, or mixed signal simulation
- Laboratory testing

Parameter	Req. #	Value	Traceability
Robustness	ETR0905	All ngVLA electronics designs shall be subject to a	SYS2402, SYS2601,
Analysis		robustness analysis. Results of this analysis are a	SYS2602, SYS2801,
		required part of the design review process.	SYS2802, SYS2805

9.5 Programmable Devices

The ngVLA will contain many programmable devices such as FPGAs, PSOCs, micro-controllers, and other programmable logic. Such components come with their own set of robustness and upgradability concerns.

9.5.1 Firmware Field Upgradability and Storage Location

Firmware for all devices shall be stored locally at the antenna. This may be in flash memory within the LRU or on an M&C host device located at the antenna. No hardware in the antenna shall be dependent

Title: ngVLA System Electronics Specifications	Owner: J. Jackson	Date: 2021-01-14
NRAO Doc. # 020.10.15.10.00-0008-REQ		Version: A

on a connection to the central M&C system to boot up and become operational in a basic configuration. Devices with dynamically configurable firmware (likely to occur in DSP hardware) could have a default configuration stored locally but operational firmware provided remotely.

All devices with firmware shall be remotely upgradeable without visiting the antenna. A firmware upgrade requiring a visit to all ngVLA antennas would be operationally and cost prohibitive. The designer may request a case-by-case waiver to this from the Project Engineer but this should be avoided.

Parameter	Req. #	Value	Traceability
Local	ETR0906	All programmable devices shall have a local copy of	SYS2601, SYS3202
Firmware		the firmware at the antenna site. Firmware for basic	
		functional and diagnostic purposes but that may be	
		configured remotely for normal operation satisfies	
		this requirement.	
Firmware	ETR0907	All devices containing firmware shall be upgradeable	SYS2304, SYS2601,
Updates		remotely, i.e. without visiting the antenna.	SYS2602, SYS3202

9.5.2 Watchdog Timers and Recovery

Complex programmable devices such as FPGAs, PSOCs, and microcontrollers will inevitably experience a lockup or other unrecoverable failure. To guard against this, all programmable devices shall utilize watchdog timers and power supervisors to detect and attempt to recover from such a failure. Additionally, reset connections shall be provided via a local M&C device to allow remote commanded resets to be sent to these devices.

Parameter	Req. #	Value	Traceability
Watchdogs	ETR0908	All complex programmable devices shall utilize watchdog	SYS2402,
		timers and power supervisors to detect lockups and	SYS2601,
		attempt self-recovery.	SYS2602
M&C	ETR0909	All DC powered LRUs and complex programmable	SYS2601,
Commanded		devices shall be provided with a physical reset line	SYS2602
Reset for DC		connected to a local M&C device to allow remote reset	
Powered		commands to be sent. This could be implemented as a	
Devices		ganged reset to all devices in an LRU or as individual lines	
		to each device (or group of devices) as determined by	
		the designer.	
M&C	ETR0912	All AC powered LRUs shall be connected to a remotely	SYS2601,
Commanded		controllable Power Distribution Unit (PDU) or similar	SYS2602
Reset for AC		device which can be remotely commanded via the M&C	
Powered		system to power cycle each individual device.	
Devices			

Title: ngVLA System Electronics Specifications	Owner: J. Jackson	Date: 2021-01-14
NRAO Doc. # 020.10.15.10.00-0008-REQ		Version: A

9.6 Periodic Self-Tests and Advanced Diagnostics

Parameter	Req. #	Value	Traceability
Periodic	ETR0910	Any device with internal M&C capability or	SYS2402, SYS2801,
Self-Tests		connected to an external M&C module shall perform	SYS3202, SYS3205,
		self-tests at power on and on a periodic basis.	SYS3220
		Selection of the appropriate time the period is left to	
		the designer. Results shall be reported back to the	
		M&C system.	
Advanced	ETR0911	Any device with internal M&C capability or	SYS2402, SYS2801,
Diagnostics		connected to an external M&C module shall have the	SYS3202, SYS3205,
		capability to perform advanced diagnostics on a	SYS3220
		request received via the M&C system.	

9.7 Electronic Test Equipment

Parameter	Req. #	Value	Traceability
Electronic Test	ETR0913	All electronic test equipment used in the	SYS2402,
and Measurement		development and maintenance of ngVLA electronics	SYS3202,
Equipment –		shall be maintained and calibrated to traceable	SAF1060
Maintenance &		external standards on an annual basis or as	
Calibration		recommended by the equipment manufacturer	
		(whichever is shorter)	

10 Electrical, Electronics, and Optical Safety

10.1 US National Electric Code Compliance

All AC and DC high-voltage (>= 50 Volts) and safety grounding shall be in compliance with the US NEC.

Parameter	Req. #	Value	Traceability
US National	ETR1001	All wiring operating at or above 50 Volts DC or 50	SYS2700, SAF1170
Electric Code		Volts RMS AC and all safety grounding shall be in	
Compliance		compliance with the US NEC.	
Grounding	ETR1002	Conflicts between safety grounding being compliant	SYS2700, SYS4601,
Conflict		with the NEC and grounding designed for low noise	SYS1601, SYS2104,
Resolution		shall be documented and brought to the attention	SYS2106, EMC0310
		of the Project Engineer and ECCB for analysis and	
		resolution.	

10.2 Contact with High Voltages

All circuitry, connectors, terminals, and wiring carrying high voltages (i.e. >= 50 Volts) shall be insulated or protected to prevent accidental contact during operation, inspection and routine maintenance. In situations where exposure must be possible during in-depth diagnosis & repair, procedures for minimizing risk of contact shall be provided in a maintenance manual for the subsystem or equipment under repair.

Title: ngVLA System Electronics Specifications	Owner: J. Jackson	Date: 2021-01-14
NRAO Doc. # 020.10.15.10.00-0008-REQ		Version: A

Parameter	Req. #	Value	Traceability
Contact with High	ETR1003	All circuitry, connectors, terminals and wiring	SYS2700,
Voltages		carrying high voltages (i.e. at or above 50 Volts DC	SAF0070,
		or 50 Volts RMS AC) shall be insulated or protected	SAF0090
		to prevent accidental contact during operation,	
		inspection and routine maintenance.	
Contact with High	ETR1004	In situations where exposure to high voltages (i.e. at	SYS2700,
Voltage during		or above 50 Volts DC or 50 Volts RMS AC) must be	SAF0070,
Diagnosis &		possible during in-depth diagnosis and repair,	SAF0090
Repair		procedures for minimizing risk of contact shall be	
		provided in a maintenance manual for the subsystem	
		or equipment under repair.	
Safety Interlocks	ETRI017	Safety interlocks shall be used in situations where	SYS2700,
		high voltages (i.e. >= 50 Volts) could be exposed.	SAF0690,
			SAF0070,
			SAF0090,
			SAF0930

10.3 Protection of Electrical Storage Devices

Devices that store electricity such as capacitors and batteries can represent serious hazards for electrical shock, fire and damage to equipment if not adequately discharged or protected.

Parameter	Req. #	Value	Traceability
Discharge of	ETR1005	Any capacitor operating at 50 VDC or above shall	SYS2700,
Capacitors		be provided with a resistive path to discharge the	SAF0940
Operating at High		capacitor to safe levels within 60 seconds of the	
Voltages		circuit being de-energized. This discharge circuitry	
		shall operate regardless of the condition of	
		downstream electronics.	
Contact with	ETR1006	Electrical terminals of high-capacity storage	SYS2700,
Terminals of		devices such as batteries and large value capacitors	SAF0070,
Storage Devices		shall be insulated or protected to prevent	SAF0090
		accidental contact during operation, inspection,	
		and routine maintenance.	
Contact with	ETR1007	In situations where exposure to terminals must be	SYS2700,
Terminals of		possible during in depth diagnosis and repair,	SAF0070,
Storage Devices		procedures for minimizing risk of contact shall be	SAF0090
During Diagnosis		provided in a maintenance manual for the	
and Repair		subsystem or equipment under repair.	

10.4 Electrical Safety Labeling

Proper labeling of any equipment where potential exposure to hazards exists is critical to prevent Injury to personnel, damage to equipment and compliance with codes and OSHA requirements.

Title: ngVLA System Electronics Specifications	Owner: J. Jackson	Date: 2021-01-14
NRAO Doc. # 020.10.15.10.00-0008-REQ		Version: A

Parameter	Req.#	Value	Traceability
High Voltage	ETR1008	Any equipment or assembly containing voltages	SYS2700,
Labels		above 50 Volts DC or 50 Volts RMS AC shall contain	SAF0059
		at least one clearly visible "High Voltage" label.	
Battery Labels	ETR1009	Any equipment that contains a battery that powers	SYS2700,
		internal circuitry, even if the device is de-energized	SAF0059
		or disconnected from the system, shall contain at	
		least one clearly visible label indicating the presence	
		of the battery and contain space allowing for	
		permanent marking of the battery install date.	2) (22 = 2 2
Power Switch	ETR1010	Any equipment containing a power switch shall	SYS2700,
Labels		contain at least one clearly visible label indicating the	SAF0059
		existence and location of that switch.	2) (22 = 2 2
Emergency Cutoff	ETR1011	Any equipment containing an Emergency Cutoff	SYS2700,
Switch Labels		Switch shall contain at least one clearly visible label	SAF0059
	==== 1010	indicating the existence and location of that switch.	0) (00 700
Safety Ground	ETRI012	Any equipment containing a critical safety ground	SYS2700,
Labels		connection shall contain at least one clearly visible	SAF0059
		label indicating the existence and location of that	
Hazardous	ETRI013	connection.	SYS2700,
Condition or	EIKIUIS	Any equipment that produces hazardous or startling conditions at startup, at shutdown, or in normal	SAF1010,
Operation Labels		operation shall contain a least one clearly visible label	SAF1040
Operation Labels		identifying the condition. This could include any	3AF1040
		motion, startling sounds, or bright light.	
Safety Instruction	ETRI014	Any critical instructions required to safely remove,	SYS2700,
Labels	LIKIOII	install or interact with a piece of equipment shall be	SAF1010,
Labels		affixed to the device on at least one clearly visible	SAF1040
		label.	3, 11 10 10
Arc Flash Hazard	ETRI015	In any situation where there exists the possibility of	SYS2700,
Warning Labels		generating an arc-flash, clearly visible label(s) shall be	SAF0059,
		affixed stating this hazard. This can include, but is not	SAF0200
		limited to: connection or disconnection of cables &	
		connectors, installing or removing hot pluggable	
		equipment, or actuating switches & circuit breakers.	
Electrical and	ETRI016	All electrical and optical safety labels shall be	SYS2700,
Optical Label		compliant with applicable standards at the time of	SAF0059
Safety Standards		installation.	

10.5 Optical and Laser Safety

Proper labeling of any equipment where potential exposure to optical hazards exists is critical to prevent Injury to personnel and compliance with codes and OSHA requirements.

Title: ngVLA System Electronics Specifications	Owner: J. Jackson	Date: 2021-01-14
NRAO Doc. # 020.10.15.10.00-0008-REQ		Version: A

Parameter	Req. #	Value	Traceability
Design for Optical	ETRI018	All LRUs using Lasers or high intensity LEDs at levels	SYS2700,
Safety		defined as dangerous in the ANSI Z136 series of standards (RD43) shall be designed to minimize or prevent human exposure.	SAF0840
Optical Safety Labels	ETRI019	In all LRUs containing lasers, clearly visible labels in accordance with the IEC 60825-1:2014 Standard (RD44) shall be applied.	SYS2700, SAF0840

11 Mechanical and Wiring

11.1 Electrical Wiring and Cables

The ngVLA system will include numerous types of electrical cable and wiring. It is critical that the correct types be specified and utilized throughout the system, and that those wires and cables be installed and documented in a proper and consistent manner. The following requirements should be applied to all electrical wiring and cables in the system as well as optical fiber cables where applicable.

11.1.1 Documentation

Drawings will follow the Drafting and Documentation Standards established for ngVLA in a separate document. BOM (Bill of Materials) will be in a format specified in that document.

Parameter	Req. #	Value	Traceability
Cable	ETRI I 0 I	All wiring, cables, and harnesses installed in the	SYS2402,
Documentation		ngVLA system shall be documented in accordance to	SYS2700,
		ngVLA Drafting and Documentation Standards.	SYS3202

11.1.2 Labeling of Wiring and Cables

Clear and concise labeling of cables is critical to the reliability and maintainability of any electronic system. In the ngVLA system, all cables shall be labeled in accordance with ANSI Standard TIA-606-C.

Parameter	Req. #	Value	Traceability
Cable Labeling	ETRII02	Wiring, cables, and harnesses shall be labeled in accordance with ANSI Standard TIA-606-C (RD28).	SYS2402, SYS2700,
			SYS3202

11.1.3 DC Power and Low Voltage Signal Wiring Color Standards

To minimize confusion during assembly and service, and maximize safety, wiring carrying commonly used DC voltages and low voltage signals shall be of a consistent color across all ngVLA electronics systems. Those signal types and colors are defined in the table below. Multi-conductor cables can be exempted from these requirements.

Parameter	Req. #	Value	Traceability
+3.3 VDC Wire	ETRI103	+3.3 VDC Wiring shall be Solid Pink in color.	SYS3202
Color		-	
+5.0 VDC Wire	ETRI 104	+5.0 VDC (+4.7 to +5.3 VDC) Wiring shall be	SYS3202
Color		Orange in color	

Title: ngVLA System Electronics Specifications	Owner: J. Jackson	Date: 2021-01-14
NRAO Doc. # 020.10.15.10.00-0008-REQ		Version: A

Parameter	Req. #	Value	Traceability
+7.5 VDC Wire	ETRI105	+7.5 VDC (>+5.3 to <+10.0 VDC) Wiring shall be	SYS3202
Color		White w/Orange stripe.	
-5.0 VDC Wire	ETRII06	-5.0 VDC (-4.7 to -5.3 VDC) Wiring shall be Solid	SYS3202
Color		Brown in Color	
-7.5 VDC Wire	ETRI 107	-7.5 VDC (>-5.3 to <-10.0 VDC) Wiring shall be	SYS3202
Color		White w/Brown stripe.	
+12 VDC Wire	ETRI108	+12 VDC (+10.0 to +12.5 VDC) Wiring shall be	SYS3202
Color		Solid Blue in color.	
+13.5 VDC Wire	ETRI154	+13.5 VDC (>+12.5 to <+14.7 VDC) Wiring shall	SYS3202
Color		be White w/Blue Stripe.	
-12 VDC Wire	ETRI109	-12 VDC (-10.0 to -12.5 VDC) Wiring shall be	SYS3202
Color		Solid Tan in color	
-13.5 VDC Wire	ETRI155	-13.5 VDC (>-12.5 to <-14.7 VDC) Wiring shall	SYS3202
Color		be White w/Tan Stripe	
+15 VDC Wire	ETRIII0	+15 VDC (+14.7 to <+15.5 VDC) Wiring shall be	SYS3202
Color		Solid Red in color.	
+17.5 VDC Wire	ETRIIII	+17.5 VDC (>+15.5 to <+20.0 VDC) Wiring shall	SYS3202
Color		be White w/Red stripe.	
-15 VDC Wire	ETRIII2	-15 VDC (-14.7 to <-15.5 VDC) Wiring shall be	SYS3202
Color		Solid Yellow in color	
-17.5 VDC Wire	ETRIII3	-17.5 VDC (>-15.5 to <-20.0 VDC) Wiring shall	SYS3202
Color		be White w/Yellow stripe.	
+20 to <+30 VDC	ETRIII4	+20 to <+30 VDC Wiring shall be Solid Grey or	SYS3202
Wire Color		Slate in color.	
+30> VDC Wire	ETRIII5	>+30 VDC Wiring shall be White w/ Grey or Slate	SYS3202
Color		,	
-48 to -54 VDC	ETRIII6	-48 to -54 VDC Wiring shall be Solid Purple or	SYS3202
Wire Color		Violet in color.	
DC Power & Signal	ETRIII7	All return wiring for DC voltages and low voltage	SYS2700,
Return Wire Color		signals shall be Solid Black in color.	SYS3202,
			SAF0070
Earth, Chassis,	ETRII18	All Earth, Chassis (structure), and Safety Grounds	SYS2700,
Safety Ground Wire		shall be Solid Green or Green w/a Yellow Stripe.	SYS3202,
Color		·	SAF0070
TTL Digital Signal	ETRIII9	Standard TTL level Digital Signal wiring shall be	SYS3202
(+5V based) Wire		Solid White w/Black and Orange Stripes.	
Color			
LVTTL Digital Signal	ETRII20	Standard LVTTL level Digital Signal wiring shall be	SYS3202
(+3.3V) Wire Color		Solid White w/Black and Violet stripes.	
LVDS Digital Signal	ETR1121	Standard LVDS digital signal wiring pairs will be	SYS3202
Wire Color		Yellow w/a Blue stripe (+ signal) and Blue w/a	
		Yellow stripe (- signal).	
RS422/485 Digital	ETR1122	Standard RS422/485 digital signal wiring pairs will	SYS3202
Signal Wire Color		be Orange w/a Blue stripe (+ signal) and Blue w/an	
		Orange stripe (- signal).	

Title: ngVLA System Electronics Specifications	Owner: J. Jackson	Date: 2021-01-14
NRAO Doc. # 020.10.15.10.00-0008-REQ		Version: A

Parameter	Req. #	Value	Traceability
Low Voltage Analog	ETRI123	Low Voltage Analog Signal Wiring shall be Solid	SYS3202
Signal Wire Color		White in color.	

11.1.4 AC Power Wiring Colors

All AC power wiring will conform to current US National Electric Code Requirements for colors.

Parameter	Req. #	Value	Traceability
AC Wiring	ETRI124	All AC wiring colors shall conform to US NEC	SYS2402, SYS2700,
Colors		requirements.	SYS3202, SAF1000
			SAFI170

11.1.5 Protection of Wiring & Cables Exposed to Sunlight & UV Light

Parameter	Req. #	Value	Traceability
UV Protection	ETR1125	Wiring and cables exposed to sunlight and UV	SYS2402, SYS2700,
of Wire &		shall be either UL rated for "Sunlight Resistance"	SAF0080, SAF0120,
Cables		or enclosed to prevent exposure.	SAF0140, SAF1170

11.1.6 Protection of Wiring and Cables Exposed to Moisture

Parameter	Req. #	Value	Traceability
Moisture	ETR1126	Wiring and cables exposed to moisture shall be	SYS2402, SYS2700,
Protection of		either UL rated "Wet" or enclosed to prevent	ENV0591, SAF0080,
Wire & Cables		exposure.	SAF0120, SAF0140,
		·	SAFI170

11.1.7 Protection of Wiring and Cables Vulnerable to Rodents

Parameter	Req. #	Value	Traceability
Rodent	ETRI127	Wiring and cables installed in areas vulnerable to	SYS2402, SYS2700,
Protection of		rodents shall utilize armoring or a rodent	SAF0080, SAF0120,
Wire &		deterrent insulation. Alternatively, the cables can	SAF0140, SAF1170
Cables		be enclosed to prevent vulnerability.	

11.1.8 Specifications of Cables Installed into Plenums

Parameter	Req. #	Value	Traceability
Plenum Cable	ETRII28	Wiring and cables installed in designated air	SYS2402, SYS2700,
Specifications		plenums shall comply with the plenum cable specifications in the US National Electrical Code	SAF0080, SAF0120, SAF0140, SAF1170
		[RD23].	

11.1.9 Use of Riser Grade Cables

Parameter	Req. #	Value	Traceability
Riser Grade	ETR1129	Wiring and cables installed in significant vertical	SYS2402, SYS2700,
Cables		runs shall utilize riser grade cables designed for	SAF0120, SAF1170,
		this application.	SAF0080

Title: ngVLA System Electronics Specifications	Owner: J. Jackson	Date: 2021-01-14
NRAO Doc. # 020.10.15.10.00-0008-REQ		Version: A

11.1.10 Flexibility, Ruggedness, and Protection of Cables Subject to Repeated Bending or Motion and Bend Radius Control

Parameter	Req. #	Value	Traceability
Flexible	ETRII30	Wiring and cables installed in applications where	SYS2402, SYS2700,
Cables		repeated bending and/or small bend radii shall	SAF0080, SAF0120,
		utilize materials specifically designed for this	SAF0480, SAF0490
		purpose.	
Bend Radius	ETRII3I	The minimum bend radius of all cables shall be	SYS2402, SYS2700,
		limited by the factory specifications for the cable.	SAF0080, SAF0480,
			SAF0490
Bend Radius	ETRI189	In cables that move or flex, the minimum bend	SYS2402, SYS2700,
Control of		radius shall be maintained by mechanical means.	SAF0080 SAF0480,
Moving Cables		,	SAF0490

11.1.11 Strain Relief and Retention of Wiring and Cables

Parameter	Req. #	Value	Traceability
Strain Relief and	ETRII32	All wiring and cables shall be installed with	SYS2402, SYS2700,
Retention of		ample cable retention and strain relief. Unless	SAF0110, SAF0480,
Wiring & Cables		specifically needed to move, no cables shall be	SAF0490, SAF0880,
		allowed to flex, dangle or present a tripping or	SAF0540
		entanglement hazard.	

11.1.12 Painting of Cables

Wires and cables of all types shall never be painted. Improper painting of wire and cable can have a negative effect on the life expectancy, safety and performance of cables.

Parameter	Req. #	Value	Traceability
Painting of Wires	ETRII56	Wires and cables shall never be painted due	SYS2402, SYS2700,
& Cables		to risk of damage to cable jackets, loss of	SYS3202, SAF0490
		flexibility and the inability to identify and work	
		on the cable.	

11.1.13 Wire Insulation Type and Ratings

Low Voltage DC and signal wiring shall utilize Irradiated PVC type insulation certified to meet the UL 1430 specification. This shall be rated at 300 VDC minimum over a temperature range of –55°C to +105°C. Exceptions may occur where they need to be installed in environments that require a specific type of insulation, i.e. inside of a vacuum Dewar, anywhere exposed to extreme temperatures or in designated air plenum spaces.

Parameter	Req. #	Value	Traceability
Wiring Insulation	ETRII57	Low-voltage DC and signal wiring shall utilize	SYS2402, SYS2700,
Туре		Irradiated PVC type insulation certified to	SAF0120, SAF0480,
		meet the UL 1430 specification. This shall be	SAF0490
		rated at 300 VDC minimum over a	
		temperature range of -55°C to +105°C.	

Title: ngVLA System Electronics Specifications	Owner: J. Jackson	Date: 2021-01-14
NRAO Doc. # 020.10.15.10.00-0008-REQ		Version: A

11.2 Connectors

Connectors represent one of the most critical aspects of any electronic system. The use of proper connectors is key to the reliability of any system, as connector typically represent the highest failure item in most electronic systems. The following requirements apply to all connectors in the ngVLA system, electrical or optical.

A key design philosophy of the ngVLA is to minimize the use of individual interconnect cables and complex wiring wherever possible. This is considered key to achieving the high reliability required by the system.

11.2.1 Documentation

Drawings will follow the Drafting and Documentation Standards established for ngVLA. BOM (Bill of Materials) will be in a format specified with a Bill of Material Management Software package.

Parameter	Req. #	Value	Traceability
Connector	ETRII33	All connectors installed in the ngVLA system	SYS2402, SYS2700,
Documentation		shall be documented in accordance to ngVLA	SYS3202
		Drafting and Documentation Standards.	

11.2.2 Labeling of Connectors

Clear and concise labeling of cables is critical to the reliability and maintainability of any electronic system. In the ngVLA system, all connectors shall be labeled in accordance with ANSI Standard TIA-606-C (RD28).

Parameter	Req. #	Value	Traceability
Connector	ETRII34	All connectors shall be labeled in accordance	SYS2402, SYS2700,
Labeling		with ANSI Standard TIA-606-C (RD28)	SYS3202

11.2.3 Connector Current Ratings

The maximum current ratings of connectors must be observed. Paralleling of pins to gain an increased current rating shall not be used. Paralleling pins for performance purposes is allowed as long as each pin is rated to handle the total current load.

Parameter	Req. #	Value	Traceability
Connector	ETRII35	All connector pin current limits shall be	SYS2402, SYS2700,
Current Ratings		followed. Use of multiple pins to gain an	SAF0070, SAF0080,
_		increased current rating shall not be permitted.	SAF0100, SAF0150
		Where the use of multiple pins is required for	
		signal performance, each pin shall be rated to	
		handle the total current load.	

11.2.4 Connector Environmental Ratings

Parameter	Req. #	Value	Traceability
Connector	ETRII36	All connectors shall be utilized in accordance	SYS2402, SYS2700,
Environmental		with their designed environment.	ENV0591,
Ratings		_	SAF0080, SAF0140,
			SAF0480, SAF0490

Title: ngVLA System Electronics Specifications	Owner: J. Jackson	Date: 2021-01-14
NRAO Doc. # 020.10.15.10.00-0008-REQ		Version: A

11.2.5 Connector Mating Cycles

Parameter	Req. #	Value	Traceability
Cable Mating	ETRII37	The specified data sheet rating for mating	SYS2402, SYS2700,
Cycles		cycles allowed for a connector type shall be followed.	SAF0080, SAF0480

11.2.6 Hot Swapping

Hot swapping (i.e. connection and disconnection of cables with power applied) is permitted in the ngVLA system. However, proper design techniques must be observed. This can include both connectors that allow exchange of an LRU without removing power and connectors that double as power switches. To avoid contact arcing, sequencing issues and abnormal current flow, connectors used in these applications must be designed for this purpose. Designers will be required to show that these factors have been considered as part of the design review process.

Parameter	Req. #	Value	Traceability
Hot Swapping	ETRII38	All connectors utilized in hot swap or live	SYS2402, SYS2700,
		disconnect application shall have pins designed	SYS3111, SAF0070,
		for this application and not allow exposure of	SAF0080, SAF0100
		dangerous voltages or currents to personnel.	
Hot Swap/Live	ETRII39	Connectors used in hot swap or live	SYS2402, SYS2700,
Connection Pin		disconnect applications shall be designed to	SYS3111, SAF0070,
Length		avoid contact arcing, abnormal current flow	SAF0080, SAF0100
		and sequencing issues.	

11.2.7 No Exposed Live Terminals

In applications where hot swap is utilized or where a connector may be left disconnected or unpopulated while the system is powered up, it is critical that no live terminals be exposed. These can pose a safety threat to humans and can result in damage to the system if shorted to nearby connections or grounded structure. One of the most common methods of accomplishing this is to ensure live voltages or signals are on enclosed female receptacles, not exposed male pins. Of course, there are also other methods that can be utilized.

Parameter	Req. #	Value	Traceability
No Exposed Live	ETRII40	Live signal or power pins in connectors shall	SYS2402, SYS2700,
Terminals		not be exposed while connectors are unmated.	SAF0070, SAF0090

11.2.8 Connector Uniqueness and/or Keying

Connectors that are similar or closely located should be sufficiently unique or keyed to prevent incorrect connectors from being mated. Incorrect connections can result in personal injury, severe damage and/or repeated maintenance visits to equipment. If a standard or common type connector is used on multiple assemblies, a common pinout for critical signals such as power supply voltages, high current outputs and grounds should be chosen and standardized among all of those connectors.

Title: ngVLA System Electronics Specifications	Owner: J. Jackson	Date: 2021-01-14
NRAO Doc. # 020.10.15.10.00-0008-REQ		Version: A

Parameter	Req. #	Value	Traceability
Non-RF	ETR1141	Non-RF Connectors that are similar or closely	SYS2402, SYS2700,
Connector		located shall be sufficiently unique or keyed to	SYS3202, SAF0070,
Uniqueness &		prevent incorrect connectors from being	SAF0130, SAF0730
Keying		mated.	
RF Connector	ETRI185	RF Connectors are typically are difficult or	SYS2402, SYS2700,
Uniqueness &		impossible to physically key. Connectors of	SYS3202, SAF0070,
Identification		this type that are similar or closely located shall	SAF0130, SAF0730
		be visually unique and identifiable to minimize	
		the possibility of incorrect connectors being	
		mated. For example, this could be	
		accomplished using clear labeling and/or color	
		coding of connector pairs.	
Common	ETR1142	Connectors used repeatedly across multiple	SYS2402, SYS2700,
Connectors		devices shall have critical signal pinouts	SYS3202, SAF0070,
		standardized.	SAF0130, SAF0730

11.2.9 Connector Alignment Guides

Connectors used in blind mate or back plane applications shall utilize some mechanism to ensure alignment of the connector during installation to avoid damage to the connector. The most common examples of this are tapered guide pins used for blind mate applications and tapered keys on some "Hardmetric" backplane connectors.

Parameter	Req.#	Value	Traceability
Connector	ETRII58	Connectors used in blind mate or back plane	SYS2402, SYS2700,
Alignment		applications shall utilize some mechanism to ensure	SYS3202, SAF0070,
Guides		alignment of the connector during installation to	SAF0130
		avoid damage to the connector.	

11.2.10 Connectors and Devices Requiring High Insertion/Removal Force

Many connectors with large pin counts and/or high current rating can require considerable physical force to insert and remove. The same applies to high power devices such as voltage regulator modules, relays, switches and high power semiconductors. When using connectors & devices where this is a concern, the designer shall integrate ejectors (or other tooling) into the design or provide for the use of external insertion/removal tools to aid in the mating and un-mating of these parts. The design shall not depend on the use of a screwdriver, pry bar, hammer, or other such tool for assembly and disassembly.

Parameter	Req. #	Value	Traceability
High Insertion	ETRII59	Connectors & devices requiring high insertion	SYS2402, SYS2700,
Force Connector		force shall be adequately supported to prevent	SYS3202, SAF0070,
& Device Support		damage to the device, connector, cable, chassis	SAF0190
		or PCB during insertion and removal.	

Title: ngVLA System Electronics Specifications	Owner: J. Jackson	Date: 2021-01-14
NRAO Doc. # 020.10.15.10.00-0008-REQ		Version: A

Parameter	Req. #	Value	Traceability
High Insertion	ETRII60	Assemblies, cables, devices, and PCBs utilizing	SYS2402, SYS2700,
Force Connector		high insertion force components or connectors	SYS3202, SAF0070,
& Device Ejectors		shall be equipped with ejectors or other	SAF0190
and Tooling		tooling to aid in installation and removal. The	
		design shall not depend on tools such as	
		screwdrivers, pry bars, and hammers for	
		assembly and disassembly.	

11.2.11 Connectors with Crimped Pins

Connectors for terminating cables and wires are available in crimped and/or solder cup configurations. Historically, properly crimped wire connections have proven to have superior reliability and conduction properties than solder type connections. For this reason, the ngVLA project is requiring the use of crimped connectors in wiring terminations wherever possible. It is understood that this is not possible for some connector configurations and applications.

The reliability of this type of connection is very dependent on the proper preparation & stripping of the wire or cable as well as the crimping procedure used when attaching the connector. This process is well defined in IPC/WHMA-A-620. "IPC Requirements and Acceptance for Cable and Wire Harness Assemblies" [RD17].

Parameter	Req. #	Value	Traceability
Crimped	ETR1186	The designer shall use crimped connectors in wiring	SYS2402
Connectors		terminations wherever possible. It is understood that	
		this is not possible for some connector configurations	
		and applications.	
Crimped	ETRI187	When using crimped connectors, wire/cable preparation	SYS2402
Connector		and connector crimping shall be in accordance with the	
Installation		procedures defined in IPC/WHMA-A-620. "IPC	
Standard		Requirements and Acceptance for Cable and Wire	
		Harness Assemblies" [RD17]	

11.3 Surface Finish, Plating, and Painting of Electronic Components, Housings, and Assemblies

11.3.1 Surfaces Requiring Electrical Conductivity for RFI/EMC Purposes or Safety Grounding

Where high-quality grounds, especially safety grounds, are required, one should not paint any of the current carrying surfaces. Chromate conversion, often referred by trade names like Alodine and Irridite, provides the best combination of corrosion protection and electrical conductivity for aluminum parts. There are two general processes for chromate. The Mil-C-5541E [RD33] Class 3 process enhances the corrosion protection capabilities at the expense of slightly reduced electrical conductivity.

MIL-DTL-5541E, "Military Specification, Chemical Conversion Coatings on Aluminum and Aluminum Alloys" [RD33], covers chemical conversion coatings formed by the reaction of chemical conversion materials with the surfaces of aluminum and aluminum alloys. Class 3 provides protection against corrosion where low electrical resistance is required. This is a thin coating providing low contact resistance, and the coating weight is lower as is the corrosion resistance.

Title: ngVLA System Electronics Specifications	Owner: J. Jackson	Date: 2021-01-14
NRAO Doc. # 020.10.15.10.00-0008-REQ		Version: A

It is also often suitable to use stainless steel in this application. The stainless steel may be painted except for areas where electrical conduction is needed.

Anodized aluminum is not electrically conductive and is not acceptable for any surface requiring electrical conductivity. Anodized aluminum used anywhere on the antenna shall be of a color not mistakable for chromate converted aluminum, and the anodized coating shall never need to be scraped off at any point to provide for electrical conductivity.

Housings and assemblies designed to be RFI shielded to levels suitable for Radio Astronomy use should not be directly exposed to an exterior environment. An outer environmental protective cover should be provided meeting the requirements outlined in the document "ngVLA System Environmental Specifications," 020.10.15.10.00-0001-SPE [AD07].

11.3.2 Surface Finish of Environmental Shielding for RFI/EMC Enclosures

There are two categories of this situation. They will be covered independently.

11.3.2.1 Housed Electronics Very Sensitive to Thermal Changes

Some electronics that will be mounted on the exterior of ngVLA antennas are extremely sensitive to temperature variations. Prime examples of this are the Front End Enclosure, Water Vapor Radiometer Enclosure, and Antenna Position Encoders. These should be mounted in environmentally sealed, well insulated enclosures that provide minimal absorption (or maximum reflection) of solar radiation.

11.3.2.2 Housed Electronics to Be Kept Cool but Not Sensitive to Temperature Variations

Other electronics which are mounted on the antenna exterior will need to be kept cool for reliability reasons but will not cause performance degradation with temperature variation. Examples of this include cryogenic controls, antenna/feed positioner electronics, HVAC, and power supply equipment. This equipment could be mounted in painted, painted steel or stainless steel housings, or fiberglass housings.

11.3.3 For Surfaces Not Requiring Electrical Conductivity.

Antenna physical components, housings, etc. could be made from painted steel, painted aluminum (after chromate conversion), painted or unpainted stainless steel, or fiberglass. If used, anodized aluminum must be of a color not mistakable for chromate-converted aluminum and the anodized coating should never need to be scraped off at any point.

11.3.4 Paint Colors

Parameter	Req. #	Value	Traceability
Chromate	ETRII43	Aluminum surfaces where electrical conduction is	SYS2106, SYS2700,
Converted		required (RFI/EMI or safety grounding) shall be	EMC0310, EMC0322,
Surfaces		treated using a Chromate Conversion process as	ENV0591, SAF0080,
		outlined in MIL-DTL-5541E. Either Class 1A or	SAF0140, SAF0490
		Class 3 can be used based on requirements	
		determined by the designer.	
Stainless	ETR1144	Stainless steel can be used for RFI/EMC housing	SYS2106, SYS2700,
Steel		where deemed feasible by the designer. Surfaces	EMC0310, EMC0322,
Surfaces		can be painted but shall be left bare where	ENV0591, SAF0080,
		electrical conduction is necessary.	SAF0140, SAF0490

Title: ngVLA System Electronics Specifications	Owner: J. Jackson	Date: 2021-01-14
NRAO Doc. # 020.10.15.10.00-0008-REQ		Version: A

Parameter	Req. #	Value	Traceability
Anodized	ETRII45	Aluminum Surfaces where no electrical	SYS2106, SYS2700,
Surfaces		conductivity is required can be anodized.	EMC0310, EMC0322,
		Anodizing shall be of a color not mistakable for	ENV0591, SAF0080,
		chromate (i.e. clear, yellow, brown, or gold).	SAF0140, SAF0490
		Anodizing shall not be used on surfaces requiring	
		electrical conductivity for RFI/EMI shielding or	
		good safety ground conduction and shall never be	
		scraped or sanded off to achieve this.	
Painted	ETRII46	Surfaces requiring paint shall be painted with white	SYS2106, SYS2700,
Surfaces		paint suitable for the surface material and	ENV0591, SAF0140,
		environmental conditions the surface will	SAF0490, SAF0880
		experience.	
Colored	ETRI147	Surfaces which need to be painted specific colors	SYS2700, SYS3202,
Paint		for safety and/or maintenance marking shall be	ENV0591,
Marking		painted with the appropriate color paint suitable	SYS2402, SAF0140
		for the surface material, environmental conditions,	SAF0190, SAF0880,
		and wear and tear the surface will experience.	SAF0490, SAF1000
Surface	ETRI188	Before painting, all surfaces shall undergo proper	SYS2700, ENV0591,
Preparation		surface preparation suitable for the material and	SYS2402, SAF0140,
for Painting		paint shall be used.	SAF0490, SAF0880

11.4 Lighting – Colors and Type

Light Emitting Diodes (LEDs) and Organic Light Emitting Diodes (OLEDs) are available in a large variety of single and multiple colors in numerous package and brightness configurations. These are a compact and low power means of being able to immediately determine the operating status of electronics hardware and systems. Certain colors of LEDs will be reserved for specific functions across all electronics in the Array. Those requirements are outlined here:

Parameter	Req. #	Value	Traceability
Type of Light	ETR1148	All light sources shall be long-life LED or OLED	SYS2402, SYS2700,
Sources		type devices. Incandescent or neon/gas type light	SYS2801, EMC0324,
		sources shall not be used.	SAF0980, SAF0990
Color of LEDs	ETR1149	All LEDs indicating the presence of power supply	SYS2700, SYS3202,
Indicating		voltages shall be Blue. Blue LEDs shall not be	SYS3220, SAF0980,
Presence of		used for other purposes unless part of a	SAF0990, SAF1100
Power		multicolor RGB or RGBW type LED used to	
		display many colors. When seen by operators or	
		maintenance personnel, BLUE should immediately	
		be only interpretable as "power is applied to this	
		hardware."	

Title: ngVLA System Electronics Specifications	Owner: J. Jackson	Date: 2021-01-14
NRAO Doc. # 020.10.15.10.00-0008-REQ		Version: A

Parameter	Req. #	Value	Traceability
Color of LEDs	ETRII50	All LEDs indicating Faults, Warnings, or	SYS2700, SYS3202,
Indicating		Abnormal Operation shall be Red. Red LEDs shall	SYS3220, SAF0980,
Fault, Warning		not be used for other purposes unless part of a	SAF0990, SAF1100
or Abnormal		multicolor RGB or RGBW type LED used to	
Operation		display many colors. When seen by operators or	
		maintenance personnel, RED should immediately	
		be interpretable only as "something is not right	
		with this equipment."	
Color of LEDs	ETRII5I	LEDs used to physically illuminate a workspace or	SYS2700, SYS3202,
Used for		physical hardware for purposes of maintenance	SAF0230, SAF1000
Purposes of		and repair shall be White. White LEDs shall not	
Illuminating a		be used for other purposes unless part of a	
Space		multicolor RGB or RGBW type LED used to	
		display many colors.	
Color of LEDs	ETRI152	LEDs used to indicate general status other than	SYS2700, SYS3202,
Used to		those indicated above shall not be blue, red or	SYS3220, SAF0980,
Indicate		white. All other colors are useable and left to the	SAF0990, SAF1100
General Status		discretion of the designer.	
LED	ETRII53	LEDs shall be operated at the minimum current	SYS2402, SYS2700,
Brightness		required to perform their function and shall not	SAF0190, SAF0230
		be set at a brightness level that causes safety	
		concerns or discomfort to individuals.	

11.5 Mechanical Assemblies Engineering Requirements

The ngVLA electronic systems will contain numerous mechanical assemblies designed to operate for 30 years with exceptionally high reliability. It is expected that design, assembly, and maintenance personnel will use the best engineering practices available when designing, building, and maintaining this equipment. The following set of requirements must be applied to assure the performance, maintainability, and life expectancy of the telescope.

Parameter	Req. #	Value	Traceability
Metric Hardware	ETRI161	All ngVLA Electronics will be assembled utilizing "M" Series metric screws, nuts, and other hardware as defined in ISO 68.1:1998 General Purpose Screw Threads – Basic Profile – Part 1: Metric Screw Threads. It is understood that this will not always be possible. Exemptions will be considered on a case by case basis. Requests for exemptions must be submitted by the Responsible Engineer with justifications to the ngVLA ECCB. Standard RF waveguide flange screws are a known exception and should be considered automatically exempted.	SYS3202

Title: ngVLA System Electronics Specifications	Owner: J. Jackson	Date: 2021-01-14
NRAO Doc. # 020.10.15.10.00-0008-REQ		Version: A

Parameter	Req. #	Value	Traceability
Hardware Labeling	ETRI162	All LRUs and assemblies shall contain at least one clearly visible label identifying the type of hardware used within the assembly. Labels will indicate whether "Metric," Imperial," or "Mixed" hardware is used.	SYS3202
Assembly Hardware: Galvanic/ Corrosion Properties	ETRI163	All assembly hardware shall be of a material, plating, and/or coating appropriate for its location based on galvanic corrosion properties.	ENV0591, SYS2402, SYS2700, SYS2801, SAF0140, SAF0490
Assembly Hardware: Electrical Properties	ETRI164	All hardware shall be of a material, plating, and/or coating appropriate for its location based on electrical conductivity.	SYS2402, SYS2700, SYS2801, EMC0310, EMC0322, EMC0327, SAF0140, SAF0490
Assembly Hardware: Strength Properties	ETRII65	All hardware shall be of an appropriate grade and material for its location based on strength.	SYS2402, SYS2700, SYS2801, SAF0140, SAF0490
Heads and Drivers for Pan Head Screws	ETRII66	All pan head screws within an LRU shall be of a consistent type drive and utilize a consistent type of maintenance tools.	SYS3202, SAF0190
Heads and Drivers for Flat Head Screws	ETRI167	All flat head screws within an LRU shall be of a consistent type drive and utilize a consistent type of maintenance tools.	SYS3202, SAF0190
Heads and Drivers for Cap Head Screws	ETRII68	All cap head screws within an LRU shall be of a consistent type drive and utilize a consistent type of maintenance tools.	SYS3202, SAF0190
Hardware Retention	ETRII69	All nut and bolt type hardware interfaces shall utilize retention techniques to prevent loosening. Examples include lock washers, adhesives, cotter pins, and safety wiring.	SYS2402, SYS2700, SYS2801, SAF0480, SAF0530
LRU Ease of Replacement	ETRII70	LRUs shall be designed to simplify the installation and removal process.	SYS2700, SYS3202, SAF0070, SAF0190, SAF0240, SAF0260, SAF0730
Fastener Torque Specifications	ETRI171	Torques for all fasteners shall be specified on assembly drawings.	SYS2402, SYS2700, SYS2801, SYS3202, SAF0530
Torque Tooling Calibration	ETRI190	Tools utilized for setting hardware torques shall be shall calibrated to a traceable external source every 5000 uses or 12 months.	SYS2402, SYS3202, SAF1060
LRU Sharp and Rough Edges	ETRI172	LRUs shall be free of sharp and rough edges.	SYS2700, SAF0540
Engineering Dimensions	ETRI173	All engineering dimensions shall be specified on reviewed design documentation.	SYS2402, SYS2801

Title: ngVLA System Electronics Specifications	Owner: J. Jackson	Date: 2021-01-14
NRAO Doc. # 020.10.15.10.00-0008-REQ		Version: A

Parameter	Req. #	Value	Traceability				
Engineering	ETRI174	On reviewed manufacturing drawings,	SYS2402, SYS2801				
Dimension		engineering dimensions shall be specified in the					
Units		format of "Metric (Imperial) units" for					
		fabrication expected to occur outside of the					
		US. Alternatively, dimensions shall be specified					
		"Imperial (Metric) units" when expected to be					
		fabricated within the US.					
Engineering	ETRI175	Engineering tolerances shall be specified on	SYS2402, SYS2801				
Tolerances		reviewed manufacturing drawings utilizing the					
		same notation as dimensions in ETR1174.					
LRU	ETRII76	LRU level assemblies shall fit together without	SYS2402, SYS2700,				
Installation		applying excessive force.	SYS2801, SYS3202,				
Force			SAF0190, SAF0260,				
			SAF0730				
LRU	ETRI177	LRUs shall be able to be installed easily without	SYS2402, SYS2700,				
Installation		damaging cosmetic or conductive surfaces.	SYS2801, SYS3202,				
Damage			SAF0490, SAF0730				
LRU Handling	ETRI178	LRUs shall be designed with ease of handling	SYS2700, SYS3202,				
J		and installation/removal in mind. This includes	SAF0190, SAF0490,				
		use of handles, eye hooks, etc. These shall be	SAF0730				
		installed to assure proper balance and safe					
		handling of the LRU.					
LRU Hoist	ETRI191	Where the weight, size, or shape of LRUs	SAF0250, SYS3202				
Points		prevents them from being moved by hand or					
		safely removed from the antenna, they must be					
		fitted with attachments for lifting gear, designed					
		so they can be fitted with such attachments					
		(e.g., threaded holes), or shaped so that					
		standard lifting gear can easily be attached.					
Design for	ETRI179	All assemblies shall be designed to survive	SYS2402, SYS2801,				
Transportation		shipping and transportation. No fragile or	SAF0240, SAF0250,				
·· · · · · · · · · · · · · · · · · · ·		insecure assemblies or wiring.	SAF0260, SAF0470				
Accessibility	ETRII80	Adequate clearances and access shall be	SYS3202, SAF0190,				
for		provided for adjustments and measurements	SAF0920				
Adjustments &		needed during normal operation and routine					
Measurements		maintenance.					
Assembly	ETRI 181	All assemblies shall be fully cleaned after	SYS2402, SYS2700,				
Cleaning		fabrication or repair.	SYS2801, SYS3202,				
		as	SAF0490, SAF0770,				
			SAF0780, SAF0800				
Assembly	ETR1182	All assemblies shall be fully inspected and tested	SYS2402, SYS2700,				
Inspection	21111102	after fabrication or repair.	SYS2801, SYS3202,				
паресстоп		area labrication of repair.	SAF0490, SAF0770,				
			SAF0780, SAF0800				
LRU	ETRI 183	I PUIs shall be marked as keyed to proyect	SYS2700, SYS3202,				
	CIVI193	LRUs shall be marked or keyed to prevent					
Orientation		assembly or installation in an incorrect	SAF0730				
		orientation.					

Title: ngVLA System Electronics Specifications	Owner: J. Jackson	Date: 2021-01-14
NRAO Doc. # 020.10.15.10.00-0008-REQ		Version: A

Parameter	Req. #	Value	Traceability
Fasteners in	ETRI 184	Anodized and black oxide fasteners shall not be	SYS2700, EMC0310,
Electrically		used at mechanical interfaces requiring	EMC0322, EMC0327
Conductive		electrical conductivity to maintain electrical	
Applications		grounds or RFI/EMC integrity.	

12 Surge and Lightning Protection for Cables Entering a Building or Enclosure

Given the extent of the array and the prevailing environmental conditions, direct and nearby lightning strikes causing a lightning electromagnetic pulse (LEMP) should be anticipated and mitigated in the electronics system design. The antenna and housed equipment shall be protected in any antenna orientation. Grounding systems shall be designed to minimize ground loops. Multi-point grounding is a necessity imposed by the need for Radio Frequency Interference (RFI) shielding, but the effects should be minimized in signal paths wherever possible.

The lightning protection system shall be designed to achieve Protection Level I as defined by IEC 62305-I-Protection Against Lightning [RD45]. This level assures protection against 99% of strikes, with a residual risk of damage for strikes with parameters outside the defined range.

Parameter	Req. #	Value	Traceability
Lightning	ETR1204	The antenna, buildings, and housed equipment shall	SYS2402,
Protection of		be protected from both direct and nearby lightning	ENV0511
Structure &		strikes, achieving Protection Level 1 as defined in	
Housings		IEC 62305-1/3. [RD45]	
Lighting	ETR1205	Antenna and central electronics systems shall be	SYS2402,
Protection of		protected against Lightning Electromagnetic Impulse	ENV0512
Electronics		(LEMP) in accordance with IEC 62305-4. [RD45]	
Systems			

The design standard shall be that signal lines exposed to large potential gradients, such as those passing via copper lines outside the building or over distances greater than 10 m, shall be protected by silicon avalanche diodes at the circuit board and by gas tubes at building entrances. Note that a low value resistor, such as 10 ohms, is required in line with the signal before the surge protector to ensure sufficient voltage to cause the protector to conduct. Cable sheaths shall be grounded at the building entrance. (See VLA LPS requirements.) Test efficacy of the design with both Surge Arrestor and Ground Resistance test sets.

Parameter	Req. #	Value	Traceability
Surge Protection	ETR1201	Power/signal lines and metal armored fiber optic	ENV0511,
at Building		cables exposed to large potential gradients shall be	ENV0512,
Entrances		protected by gas tubes at building and antenna	SYS2700,
		structure entrances. Protection shall be tested with	SAF0140,
		the appropriate equipment.	SAFI170
Cable Armoring	ETR1202	Cable armoring sheaths shall terminate at the	ENV0511,
Sheath		building or antenna structure entrance and not	ENV0512,
Termination		continue into the building or structure.	SYS2700,
		_	SAF0140,
			SAFI170

Title: ngVLA System Electronics Specifications	Owner: J. Jackson	Date: 2021-01-14
NRAO Doc. # 020.10.15.10.00-0008-REQ		Version: A

Parameter	Req. #	Value	Traceability
Surge Protection	ETR1203	Power and signal lines exposed to large potential	ENV0512,
at Equipment I/O		gradients shall be protected by silicon avalanche	SAF0140,
Entry Points		diodes at I/O entry points to circuit boards and	SAFI170
		electronics.	

13 Soldering and Electrical Connections

All electronic connections will shall follow the IPC J-STD-001G Requirements for Soldered Electrical and Electronic Assemblies. This standard describes the materials, processes, and acceptability criteria for producing electronic assemblies.

The standard recognizes that electrical and electronic assemblies can be subject to classifications by the intended end-item use. Three general end-product classes have been established to reflect differences in the functional requirements, reliability, and inspection frequency. The product class can be used in the statement of work during procurement.

- Class I General Electronic Products: Includes products suitable for applications where the major requirement is the function of the completed assembly.
- Class 2 Dedicated Service Electronic Products: Includes products where continued performance and extended life is required, and for which uninterrupted service is desired but not critical. Typically the end-use environment would not cause failures.
- Class 3 High-Performance/Harsh Environment Electronics Products: Includes products where continued high performance or performance on demand is critical, equipment down time cannot be tolerated, end-use environment may be uncommonly harsh, and the equipment must function when required, such as life support or other critical systems.

TI \// /	۱ I				•		1.			•	•	•	\sim	_	•
The ngVL/	אםום ג	ったいしつコ	วทศ	AIACTR	าทเก	accami	אוור ב	cnall	nΔ	manut	2CflirDA	licing	(1	200	,
1110 112 1 11/	1 6161	cu icai	anu	CICCLI	JI 11C	asscilli	JIIC3	Julan	-	IIIaiiui	actui cu	using	\sim	ass z	

Parameter	Req. #	Value	Traceability
Soldering and	ETRI301	All electronic connections shall follow Class 2 of	SYS2402, SYS2801,
Electrical		the IPC J-STD-001G Requirements for Soldered	SYS3202, SAF0130,
Connections		Electrical and Electronic Assemblies. This standard	SAF0140, SAF0490,
		describes the materials, processes and acceptability	SAF0770, SAF0780,
		criteria for producing electronic assemblies. Class	SAF0800
		3 may be utilized at the discretion of the	
		Responsible Engineer.	

14 Verification and Quality Assurance

The design may be verified to meet the requirements by analysis (A), inspection (I), a demonstration (D), or a test (T), each defined below.

Verification by Analysis: The fulfillment of the specified performance shall be demonstrated by appropriate analysis (hand calculations, finite element analysis, thermal modeling, etc.), which will be checked by the ngVLA project office during the design phase.

Verification by Inspection: The compliance of the developed system is determined by a simple inspection or measurement.

Title: ngVLA System Electronics Specifications	Owner: J. Jackson	Date: 2021-01-14
NRAO Doc. # 020.10.15.10.00-0008-REQ		Version: A

Verification by Demonstration: The compliance of the developed feature is determined by a demonstration.

Verification by Test: The compliance of the developed system with the specified performance shall be demonstrated by site acceptance tests.

The following table summarizes the expected final design verification methods that will be executed at the product qualification phase in preparation for the Critical Design Review (CDR). Multiple verification methods are allowed and expected over the earlier design phases, e.g. requirements which undergo testing at the CDR stage may be verified by analysis during preliminary design in preparation for the PDR. All requirements that are subject to a FAT or SAT test shall have a supporting analysis for preliminary verification at each design review. This degree of verification applies to the prototype antenna(s) and electronics only. The verification procedures that will be deployed during the production phase will be defined as part of the production planning documents.

Req. ID	Name	Verify Method
ETR0301	LRU Designation	Demonstration
ETR0401	LRU Physical Marking Label Contents	Demonstration
ETR0402	LRU Physical Tracking Device	Demonstration
ETR0403	Remote Identification	Demonstration
ETR0404	LRU Remote ID for devices with no direct M&C connection	Demonstration
ETR0405	LRU Tracking Label & Tag Specifications	Test
ETR0406	LRU Weight Labels	Demonstration
ETR0407	LRU Multiple Person Lift Labels	Demonstration
ETR0408	Lift and Hoist Points	Demonstration
ETR0409	LRU Physical Marking Label Ruggedness	Test
ETR0410	Hot Connect & Disconnect Warning Labels	Demonstration
ETR0501	ESD Low Air Discharge Susceptibility Testing	Test
ETR0502	ESD Protection	Analysis
ETR0503	ESD Packaging & Storage	Test
ETR0504	Prevention & Discharge of Electrostatic Charge Build-up	Test
ETR0505	ESD High Air Discharge Susceptibility Testing	Test
ETR0506	ESD Direct Contact Discharge Susceptibility Testing	Test
ETR0601	EMC/RFI Mitigation in Designs	Test
ETR0701	Printed Circuit Board IPC Standard Compliance	Demonstration
ETR0702	Rigid Printed Circuit Board Material	Demonstration
ETR0703	Flexible Printed Circuit Board Material	Demonstration
ETR0704	Printed Circuit Board Plating / Surface Finish Material	Demonstration
ETR0705	Printed Circuit Board Solder Mask Material	Demonstration
ETR0706	Printed Circuit Board Marking Material	Demonstration
ETR0707	Printed Circuit Board Solder Mask Color	Demonstration
ETR0708	3	Inspection
ETR0709	11 /	Demonstration
ETR0710	PCB FPGA Test Points and/or Indicators	Demonstration
ETR0711	PCB Critical Signal Test Points	Demonstration

Req. ID	Name	Verify Method
ETR0712	Printed Circuit Board RoHS Compliance	Demonstration
ETR0713	PCB Logos	Inspection
ETR0714	PCB Optimum HF Performance and Low Emission	Analysis
ETR0715	Solder Profiles for BGA Packages	Demonstration
ETR0716	Printed Circuit Board Fiducials & Alignment Markings	Inspection
ETR0717	PCB Design for Automated Assembly & Test	Demonstration
ETR0801	AC Power & Grounding Design	Analysis
ETR0802	DC Power & Grounding Design	Analysis
ETR0803	LRU Power Input	Analysis
ETR0804	LRU Physical Ground	Inspection
ETR0805	Overcurrent Protection	Test
ETR0806	Overcurrent Protection Device Monitoring	Test
ETR0807	Thermal Protection	Test
ETR0808	Thermal Protection Monitoring	Demonstration
ETR0809	On-Site Reset / Start-Up Sequence	Test
ETR0810	Power Outage Behavior	Demonstration
ETR0811	Automated Recovery Sequence	Demonstration
ETR0812	Power On Indicators	Demonstration
ETR0813	Power Supply Dedicated Returns	Demonstration
ETR0814	Power Supply Returns Separate from Ground	Inspection
ETR0815	Connections in Hot Swap Configuration	Demonstration
ETR0816	Thermal Analysis	Analysis
ETR0817	Battery Use	Demonstration
ETR0818	Transient Protection of LRU I/O & Power Connections	Analysis
ETR0901	Component Sources	Analysis
ETR0902	Standard Component Libraries	Analysis
ETR0903	Component Environmental Specifications	Analysis
ETR0904	Reliability Analysis	Analysis
ETR0905	Robustness Analysis	Analysis
ETR0906	Local Firmware	Demonstration
ETR0907	Firmware Updates	Demonstration
ETR0908	Watchdogs	Test
ETR0909	M&C Commanded Reset for DC Powered Devices	Demonstration
ETR0910	Periodic Self Tests	Demonstration
ETR0911	Advanced Diagnostics	Demonstration
ETR0912	M&C Commanded Reset for AC Powered Devices	Demonstration
ETR0913	Electronic Test and Measurement Equipment – Maintenance & Calibration	Inspection
ETR1001	US National Electric Code Compliance	Analysis
ETR1002	Grounding Conflict Resolution	Analysis

Req. ID	Name	Verify Method
ETR1003	Contact with High Voltages	Analysis
ETR1004	Contact with High Voltage During Diagnosis & Repair	Analysis
ETR1005	Discharge of Capacitors Operating at High Voltages	Analysis
ETR1006	Contact with Terminals of Storage Devices	Analysis
ETR1007	Contact with Terminals of Storage Devices During Diagnosis & Repair	Analysis
ETR1008	High Voltage Labels	Inspection
ETR1009	Battery Labels	Inspection
ETR1010	Power Switch Labels	Inspection
ETR1011	Emergency Cutoff Switch Labels	Inspection
ETRI012	Safety Ground Labels	Inspection
ETRI013	Hazardous Condition or Operation Labels	Inspection
ETRI014	Safety Instruction Labels	Inspection
ETRI015	Arc Flash Hazard Warning Labels	Demonstration
ETRI016	Electrical and Optical Safety Label Standards	Test
ETRI017	Safety Interlocks	Demonstration
ETRI018	Design for Optical Safety	Analysis
ETRI019	Optical Safety Labels	Demonstration
ETRI I 0 I	Cable Documentation	Demonstration
ETRI102	Cable Labeling	Demonstration
ETRI103	+3.3 VDC Wire Color	Demonstration
ETRII04	+5.0 VDC Wire Color	Demonstration
ETRI105	+7.5 VDC Wire Color	Demonstration
ETRII06	-5.0 VDC Wire Color	Demonstration
ETRI107	-7.5 VDC Wire Color	Demonstration
ETRI108	+12 VDC Wire Color	Demonstration
ETRI109	-12 VDC Wire Color	Demonstration
ETRIII0	+15 VDC Wire Color	Demonstration
ETRIIII	+17.5 VDC Wire Color	Demonstration
ETRIII2	-15 VDC Wire Color	Demonstration
ETRIII3	-17.5 VDC Wire Color	Demonstration
ETRIII4	+20 to <+30 VDC Wire Color	Demonstration
ETRIII5	+30> VDC Wire Color	Demonstration
ETRIII6	–48 to –54 VDC Wire Color	Demonstration
ETRIII7	DC Power and Signal Return Wire Color	Demonstration
ETRIII8	Earth, Chassis, Safety Ground Wire Color	Demonstration
ETRIII9	TTL Digital Signal (+5V based) Wire Color	Demonstration
ETRI120	LVTTL Digital Signal (+3.3V) Wire Color	Demonstration
ETRI121	LVDS Digital Signal Wire Color	Demonstration
ETRI122	RS422/485 Digital Signal Wire Color	Demonstration
ETRI123	Low Voltage Analog Signal Wire Color	Demonstration

Req. ID	Name	Verify Method
ETRI124	5	Demonstration
ETRI125	UV Protection of Wire & Cables	Demonstration
ETRI126	Moisture Protection of Wire & Cables	Demonstration
ETRI127	Rodent Protection of Wire & Cables	Demonstration
ETRI128	Plenum Cable Specifications	Demonstration
ETRI129	Riser Grade Cables	Demonstration
ETRII30	Flexible Cables	Analysis
ETRII3I	Bend Radius	Analysis
ETRII32	Strain Relief & Retention of Wiring & Cables	Analysis
ETRII33	Connector Documentation	Inspection
ETRII34	Connector Labeling	Inspection
ETRII35	Connector Current Ratings	Analysis
ETRII36	Connector Environmental Ratings	Analysis
ETRII37	Cable Mating Cycles	Analysis
ETRII38	Hot Swapping	Analysis
ETRII39	Hot Swap / Live Connection Pin Length	Analysis
ETRII40	No Exposed Live Terminals	Analysis
ETR1141	Non-RF Connector Uniqueness & Keying	Demonstration
ETR1142	Common Connectors	Analysis
ETRI143	Chromate Converted Surfaces	Demonstration
ETR1144	Stainless Steel Surfaces	Demonstration
ETRI145	Anodized Surfaces	Demonstration
ETRII46	Painted surfaces	Demonstration
ETRI147	Colored Paint Marking	Demonstration
ETRII48	Type of Light Sources	Demonstration
ETR1149	Color of LEDs Indicating the Presence of Power	Demonstration
ETRII50	Color of LEDs Indicating Fault, Warning or Abnormal Operation	Demonstration
ETRI151	Color of LEDs Used for Purposes of Illuminating a Space	Demonstration
ETRI152	Color of LEDs Used to Indicate General Status	Demonstration
ETRI153	LED Brightness	Demonstration
ETRII54	+13.5 VDC Wire Color	Demonstration
ETRI155	-13.5 VDC Wire Color	Demonstration
ETRII56	Painting of Wires & Cables	Inspection
ETRI157	Wiring Insulation Type	Analysis
ETRI158	Connector Alignment Guides	Analysis
ETRI159	High Insertion Force Connector & Device Support	Analysis
ETRII60	High Insertion Force Connector & Device Ejectors and Tooling	Analysis
ETRI161	Metric Hardware	Demonstration
ETRI162	Hardware Labeling	Demonstration
ETRI163	Assembly Hardware – Galvanic / Corrosion Properties	Analysis

Req. ID	Name	Verify Method
ETRI164	Assembly Hardware – Electrical Properties	Analysis
ETRI165	Assembly Hardware – Strength Properties	Analysis
ETRI166	Heads and Drivers for Pan Head Screws	Demonstration
ETRI167	Heads and Drivers for Flat Head Screws	Demonstration
ETR1168	Heads and Drivers for Cap Head Screws	Demonstration
ETR1169	Hardware Retention	Demonstration
ETRII70	LRU Ease of replacement	Demonstration
ETR1171	Fastener Torque Specifications	Demonstration
ETRI172	LRU Sharp and rough edges	Demonstration
ETRI173	Engineering Dimensions	Demonstration
ETRI174	Engineering Dimension Units	Demonstration
ETR1175	Engineering Tolerances	Demonstration
ETRII76	LRU Installation Force	Test
ETRI177	LRU Installation Damage	Demonstration
ETR1178	LRU Handling	Demonstration
ETRI179	Design for Transportation	Test
ETRI180	Accessibility for adjustments & measurements	Demonstration
ETRI181	Assembly Cleaning	Inspection
ETRI182	Assembly Inspection	Inspection
ETRI183	LRU Orientation	Demonstration
ETRI184	Fasteners in Electrically Conductive Applications	Demonstration
ETRI185	RF Connector Uniqueness & Identification	Demonstration
ETRI186	Crimped Connectors	Demonstration
ETRI187	Crimped Connector Installation Standard	Demonstration
ETR1188	Surface Preparation for Painting	Demonstration
ETRI189	Bend Radius Control of Moving Cables	Demonstration
ETRI190	Torque Tooling Calibration	Inspection
ETRI191	LRU Hoist Points	Demonstration
ETR1201	Surge Protection at Building Entrances	Test
ETR1202	Cable Armoring Sheath Termination	Inspection
ETRI203	Surge Protection at Equipment I/O Entry Points	Test
ETR1204	Lightning Protection – Structure & Housings	Analysis
ETR1205	Lighting Protection of Electronics Systems	Analysis
ETRI301	Soldering and Electrical Connections	Demonstration

Title: ngVLA System Electronics Specifications	Owner: J. Jackson	Date: 2021-01-14
NRAO Doc. # 020.10.15.10.00-0008-REQ		Version: A

15 Appendix

15.1 Acronyms and Abbreviations

Acronym	Description
AC	Alternating Current
AD	Applicable Document
AIV	Assembly, Integration, and Verification
ALMA	Atacama Large Millimeter Array
ANSI	American National Standards Institute
BGA	Ball Grid Array IC package type
BOM	Bill of Materials
CAD	Computer Aided Design
CID	Configuration Item Description
COTS	Commercial Off-the-Shelf
DC	Direct Current
DoD	US Department of Defense
DSP	Digital Signal Processing or Digital Signal Processor
ECCB	Engineering Change Control Board
EMC	Electro-Magnetic Compatibility
EMP	Electro-Magnetic Pulse
ENIG	Electroless Nickel/Immersion Gold PCB plating process
ESD	Electro-Static Discharge
EU	European Union
FPGA	Field-Programmable Gate Array
FR-4	Flame Retardant Type 4 Printed Circuit Board Substrate
GFP	Government Furnished Property
HASL	Hot Air Solder Leveling PCB plating process
HVAC	Heating, Ventilation, and Air Conditioning
IC	Integrated Circuit
IEC	International Electrotechnical Commission
IPC	Institute for Interconnecting and Packaging Electronics Circuits (formerly
	Institute of Printed Circuits)
ISO	International Standards Organization
IUID	Item Unique Identification
JTAG	Boundary Scan test technology developed by the Joint Test Action Group
LED	Light-Emitting Diode
LEMP	Lightning Electro-Magnetic Pulse
LO	Local Oscillator
LPS	Lightning Protection System
LRU	Line Replaceable Unit
LVDS	Low Voltage Differential Signaling
LVTTL	Low Voltage Transistor-Transistor Logic IC technology
MTBF	Mean Time Between Failure
MTTR	Mean Time To Repair
M&C	Monitor and Control
NEC	US National Electrical Code

Title: ngVLA System Electronics Specifications	Owner: J. Jackson	Date: 2021-01-14
NRAO Doc. # 020.10.15.10.00-0008-REQ		Version: A

Acronym	Description	
NEMA	US National Electrical Manufacturers Association	
NFPA	US National Fire Protection Association	
ngVLA	Next Generation VLA	
NRAO	National Radio Astronomy Observatory	
OLED	Organic Light-Emitting Diodes	
OSHA	US Occupational Safety and Health Administration	
PCB	Printed Circuit Board	
PDU	Power Distribution Unit	
PSOC	Programmable System On a Chip	
PTC	Positive Temperature Coefficient (a type of thermistor used in circuit	
	protection applications)	
PVC	Polyvinyl Chloride	
QFP	Quad Flat Pack IC Package type	
RD	Reference Document	
RF	Radio Frequency	
RFI	Radio Frequency Interference	
RFID	Radio Frequency Identification	
RGB	Red Green Blue (referring to LED configuration)	
RGBW	Red Green Blue White (referring to LED configuration)	
RMS	Root Mean Square	
RoHS	Restriction of Hazardous Substances (EU Directive 2002/95/EC)	
TTL	Transistor-Transistor Logic IC technology	
TVSS	Transient Voltage Surge Suppression – a semiconductor-based circuit	
	protection device	
UID	Unique Identification	
UII	Unique Item Identification	
UL	Underwriters Laboratories	
UPS	Uninterruptible Power Supply	
UV	Ultra-Violet	
VAC	Volts – Alternating Current (RMS unless otherwise specified)	
VDC	Volts – Direct Current	
VLA	Jansky Very Large Array	