

Title: ngVLA LO Reference and Timing: Generation and Distribution	Owner: Shillue	Date : 2022-05-30
Requirements		
NRAO Doc. #: 020.35.00.00.00-0001-REQ		Version: B

ngVLA Local Oscillator Reference and Timing: Generation and Distribution Requirements

020.35.00.00.00-0001-REQ Status: **RELEASED**

PREPARED BY	ORGANIZATION	DATE
B. Shillue	Central Development Laboratory, NRAO	2022-05-27

APPROVALS	ORGANIZATION	SIGNATURES
B. Shillue, IPT Lead, CSP & Timing	ngVLA Project Office	William Shillne
		William Shillue (Jun 1, 2022 03:40 EDT)
R. Selina, Project Engineer	ngVLA Project Office	R. Selina
1 Toject Engineer		R. Selina (Jun 1, 2022 06:09 MDT)
T. Küsel, Systems Engineer	ngVLA Project Office	
Systems Engineer		Thomas Kusel (Jun 1, 2022 08:54 EDT)
W. Esterhuyse, Antenna Project Manager	ngVLA Project Office	MIL A

RELEASED BY	ORGANIZATION	SIGNATURE
W. Esterhuyse, Antenna Project Manager	ngVLA Project Office	St. Ay

Title: ngVLA LO Reference and Timing:	Owner: Shillue	Date: 2022-05-30
Generation and Distribution		
Requirements		
NRAO Doc. #: 020.35.00.00.00-0001-REC	2	Version: B

Change Record

Version	Date	Author	Affected Section(s)	Reason
01	2018-05-30	B. Shillue	All	First Draft
02	2018-09-30	B. Shillue	All	Incorporation of Long Baseline Array Requirements Incorporate reviewer edits
03	2018-11-16	B. Shillue	All	Minor edits after Internal Review
04	2019-04-23	B. Shillue	3.4,6,5	Small changes to sections 3.4.6 and 5, other minor edits
05	2019-06-04	B. Shillue	3.4.2, 3.4.3, 4.2.2, 4.2.3, 4.3.1	Changed detail of reqts -0260, -0300 and added -0251
А	2019-07-26	A. Lear	All	Incorporated minor edits from R. Selina & M. McKinnon; prepared PDF for signatures & release
A.01	2022-04-14	B. Shillue	All	Initial Draft for internal review.
A.02	2022-05-27	A. Lear	All	Formatting, copy edits.
В	2022-05-30	A. Lear	All	Prepare PDF for signatures and release.

Title: ngVLA LO Reference and Timing:
Generation and Distribution
Requirements

Owner: Shillue

Date: 2022-05-30

NRAO Doc. #: 020.35.00.00.00-0001-REQ

Version: B

Table of Contents

I	Introduction	5
1.1	Purpose	5
1.2	Scope	5
2	Related Documents and Drawings	6
2.1	Applicable Documents	
2.2	Applicable Interface Control Documents	6
2.3	Reference Documents	7
3	Overview of Subsystem Requirements	8
3.1	Document Outline	
3.2	Subsystem General Description	8
3.3	Subsystem Boundary and External Interfaces	
3.4	Key Requirements Summary	
3.5	Requirements Definitions	
3.6	Requirements Flow Down	11
3.7	Verb Convention	12
4	Assumptions	. 12
5	Environmental Conditions	
5.1	Equipment Location	13
5.2	Survival Conditions	14
5.3	Transportation conditions	15
5.4	Storage Conditions	15
5.5	Site Elevation	15
5.6	Environmental Protection Requirements	16
5.6. l	Seismic	
5.6.2	Lightning, Dust, Fauna, Rain/Water Infiltration and Corrosion Protection	
5.7	Precision Operating Conditions (POC)	16
5.7.I	Central Electronics Building	16
5.7.2	Repeater Stations	17
5.7.3	Antenna Stations	
5.8	Normal Operating Conditions (NOC)	
5.8.1	Central Electronics Building	
5.8.2	Repeater Stations	
5.8.3	Antenna Stations	
5.9	Limits to Operating Conditions (LOC)	
5.10	Standby Conditions	
6	Subsystem Requirements	
6.1	General	
6.2	Frequency	
6.3	Phase	
6.4	Timing	
6.4.1	Central Building	
6.4.2	Antenna Stations	
6.5	Modes	
6.6	Spurious/RFI	
661	Signal Path Spurious	26

Title: ngVLA LO Reference and Timing:	Owner: Shillue	Date : 2022-05-30
Generation and Distribution		
Requirements		
NRAO Doc. #: 020.35.00.00.00-0001-REC)	Version: B

0.0.2	3purious Kri Eiliissioii – Discussioii	∠0
6.6.3	Central Building	28
6.6.4	Spurious RFI Emission – Repeater Stations	28
6.6.5	Spurious RFI Emission – Antenna Stations	29
6.7	Monitor and Control	29
6.8	LifecycleLifecycle Lifecycle L	30
6.9	Configuration	31
6.10	EMC/Immunity	
6.11	Reliability, Availability, and Maintainability	33
6.12	Design Requirements	34
6.12.1		
6.12.2		34
6.12.3	,,,,	
6.12.4	Materials, Lighting, and Mechanical	37
7	Safety	37
7.1	Safety Requirements	37
8	Interface Requirements	38
8.1	Interface to PSU	
8.2	Interface to BMR	
8.3	Interface to EEC	
8.4	Interface to MCL/HIL	
8.5	Interface to NSB	
8.6	Interface to MCL (RTG)	40
8.7	Interface to FIB	40
8.8	Interface to DBE	41
8.9	Interface to CSP	41
8.10	Interface to ATF	
8.11	Interface between RTG-RTD	42
9	Technical Metrics	43
9.1	Technical Performance Measures	43
10	Verification	
10.1	Environmental Testing	
10.2	Subsystem Verification Table	
11	Appendix	
11.1	• •	

Title: ngVLA LO Reference and Timing: Generation and Distribution	Owner: Shillue	Date : 2022-05-30
Requirements		
NRAO Doc. #: 020.35.00.00.00-0001-REC)	Version: B

I Introduction

1.1 Purpose

This document presents the complete set of Level 2 subsystem requirements that should guide the design and development of the LO Reference and Timing Generation (RTG) and Distribution (RTD) Subsystem. Requirements described in this document are derived from applicable ngVLA System Requirements and System-Level Specification documents as listed in the Applicable Documents table. The overall requirements hierarchy and management strategy are outlined in [AD01] and [AD02].

The content of these requirements is at the subsystem level, conforming to the system architecture [AD06], but aims to be implementation agnostic within the subsystem boundaries. Some assumptions about the subsystem may be given, but only to the degree necessary to unambiguously define the subsystem requirements.

1.2 Scope

The scope of this document is the LO Reference and Timing Generation (RTG) and Distribution (RTD) Subsystem, as delivered for ngVLA integration. This includes the following:

- Assumptions upon which the requirements are based
- Definition of environmental requirements to be used as applicable conditions in the definition of the requirements
- A complete set of requirements for the subsystem needed for the development, operation and maintenance of the subsystem, including interface requirements that are derived from the applicable list of ICDs.
- Nonfunctional requirements unique to this subsystem (e.g., safety, quality, reliability, maintainability).
- List of Interface Requirements (I/F) and link to Interface Control Documents necessary to integrate with other Systems and Subsystems.
- Numbering of all requirement and establishment of traceability to higher level requirements.
- Technical Performance Measures (TPMs) at the subsystem level, which support the Measures of Performance (MOPs) at the system level.
- Requirements specified for the complete lifecycle of the subsystem, including any requirements that are applicable for operations, maintenance, decommissioning, and disposal.

Title: ngVLA LO Reference and Timing: Generation and Distribution	Owner: Shillue	Date: 2022-05-30
Requirements		
NRAO Doc. #: 020.35.00.00.00-0001-REC)	Version: B

2 Related Documents and Drawings

2.1 Applicable Documents

The following documents apply to this Requirements Specification to the extent specified. In the event of a conflict between the documents referenced herein and the content of this Requirements Specification, the content of the *highest*-level specification (in the requirements flow-down) shall be considered the superseding requirement for design elaboration and verification.

Ref. No.	Document Title	Rev./Doc. No.
AD01	ngVLA Systems Engineering Management Plan	020.10.00.00.00-0001-PLA
AD02	ngVLA Requirements Management Plan	020.10.15.00.00-0001-PLA
AD03	ngVLA System Requirements	020.10.15.10.00-0003-REQ
AD04	L1 System Environmental Specifications	020.10.15.10.00-0001-SPE
AD05	L1 System EMI/RFI Requirements	020.10.15.10.00-0002-REQ
AD06	System-Level Architecture Model	020.10.20.00.00-0002-DWG
AD07	L1 Safety Specification	020.80.00.00.00-0001-REQ
AD08	L1 Security Specification	020.80.00.00.00-0003-REQ
AD09	ngVLA System Electronics Specifications	020.10.15.10.00-0008-REQ
ADI0	Calibration Requirements	020.22.00.00.00-0001-REQ
ADII	System Technical Budgets	020.10.25.00.00-0002-DSN

2.2 Applicable Interface Control Documents

Ref. No.	Document Title	Rev./Doc. No.
AD20	Interface Control Document Between: Antenna Electronics	020.10.40.05.00-0006
	DC Power Supply (PSU) and Antenna Electronics Subsystem:	
	section on LO Reference and Timing and Distribution (RTD)	
	Subsystem (interface 0058)	
AD21	Interface Control Document Between: Antenna Electronics	020.10.40.05.00-0040
	Bins, Modules, and Racks (BMR) and Antenna Electronics	
	Subsystem: section on LO Reference and Timing and	
	Distribution (RTD) Subsystem (interface 0064)	
AD22	Interface Control Document Between: LO Reference and	020.10.40.05.00-0069
	Timing and Distribution (RTD) Subsystem and Antenna	
	Electronics Environmental Control System (EEC) Subsystem	
AD23	Interface Control Document Between: Monitor and Control	020.10.40.05.00-0077
	Hardware Interface Layer (HIL)/Monitor and Control	
	Subsystem (MCL) (interface 0064) (incl MCL: interface 107)	
	and LO Reference and Timing and Distribution (RTD)	
	Subsystem	
AD24	Interface Control Document Between Computing/CSP	020.10.40.05.00-0095
	subsystems : section on LO Reference and Timing Generation	
	(RTG) and Distribution (RTD) Subsystems (interface 0099,	
	0100) and ngVLA Site Buildings (NSB) subsystem	
AD25	Interface Control Document Between Monitor and Control	020.10.40.05.00-0106
	System and LO Reference and Timing Generation (RTG)	

Title: ngVLA LO Reference and Timing:	Owner: Shillue	Date : 2022-05-30
Generation and Distribution		
Requirements		
NRAO Doc. #: 020.35.00.00.00-0001-REC	2	Version: B

Ref. No.	Document Title	Rev./Doc. No.
AD26	Interface Control Document Between Central Fiber Infrastructure (FIB) and LO Reference and Timing Distribution (RTD)	020.10.40.05.00-0120
AD27	Interface Control Document Between: Digital Backend Subsystem (DBE) and LO Reference and Timing – distribution (RTD)	020.10.40.05.00-0122
AD28	Interface Control Document Between: Central Signal Processing (CSP) and LO Reference and Timing Generation (RTG)	020.10.40.05.00-0123
AD29	Interface Control Document Between: LO Reference and Timing – Distribution (RTD) and LO Reference and Timing – Generation (RTG)	020.10.40.05.00-0124
AD30	Interface Control Document Between: LO Reference and Timing – Distribution (RTD) and Antenna Time and Frequency (ATF)	020.10.40.05.00-0125

2.3 Reference Documents

The following documents are referenced within this text or provide supporting context:

Ref. No.	Document Title	Rev./Doc. No.
RD01	Science Requirements	020.10.15.05.00-0001-REQ
RD02	ANSI Z136 Standards for Implementing a Safe Laser Program	ANSI Z136.1 through .9
RD03	Safety of Laser Products – Part 1: Equipment Classification and Requirements	IEC 60825-1:2014
RD04	Timing Requirements & Considerations	Draft memo
RD05	Configuration: Reference Design Rev D Description	ngVLA Memo No. 92

Title: ngVLA LO Reference and Timing:	Owner: Shillue	Date : 2022-05-30
Generation and Distribution		
Requirements		
NRAO Doc. #: 020.35.00.00.00-0001-REQ		Version: B

3 Overview of Subsystem Requirements

3.1 Document Outline

This document presents the technical requirements for the LO Reference and Timing Generation (RTG) and Distribution (RTD) Subsystem. These parameters determine the overall performance of the subsystem and the functional requirements necessary to enable its operation and maintenance.

The Level 2 Subsystem Requirements, along with detailed explanatory notes, are found in Section 6. The notes contain elaborations regarding the meaning, intent, and scope of the requirements. These notes form an important part of the definition of the requirement and should guide the verification procedures.

In many cases, the notes contain an explanation or an analysis of how the numeric values of requirements were derived. Where numbers have a degree of ambiguity or are insufficiently substantiated, this is also documented in the notes. In this way, the trade-space available is apparent to scientists and engineers who will guide the evolution of the ngVLA concept.

In certain cases parameters may be simply noted with a TBD or TBC value. The goal in such cases is to identify parameters that will require definition in future releases of these requirements as the associated technical issues are understood.

Section 9 identifies performance metrics that will be monitored throughout the conceptual design phase. These are metrics to assist in the trade-off analysis of various concepts, should tensions be identified between requirements.

3.2 Subsystem General Description

The LO Reference and Timing Generation (RTG) and Distribution (RTD) Subsystem compromises a set of modules that perform a function of hardware timekeeping: generation and routing of an electronic signal, pulse, or digital rising or falling edge from a common reference input to another module or subsystem. The RTG subsystem is fully located in the ngVLA central building (or, for very distant antenna stations – at a secondary central facility). The RTD subsystem takes signal generated and developed by the RTG subsystem and delivers them to the antenna stations by optical fiber. The hardware will include electronic and optical (laser) clocks and sources, amplifiers and splitting distribution systems, optical fiber and modems, amplifiers, frequency multipliers and dividers, and phase lock loops.

3.3 Subsystem Boundary and External Interfaces

Figure 1 and Figure 2 show the RTG and RTD subsystem boundaries, in the context of other systems on the antenna. External systems are shown in boxes with their Configuration Item (CI) number, in accordance with the Product Breakdown Structure (PBS) generated from the system architecture model. The ICD document number corresponding to each interface is displayed above the interconnect, where it exists.

Title: ngVLA LO Reference and Timing:	Owner: Shillue	Date: 2022-05-30
Generation and Distribution		
Requirements		
NRAO Doc. #: 020.35.00.00.00-0001-REQ		Version: B

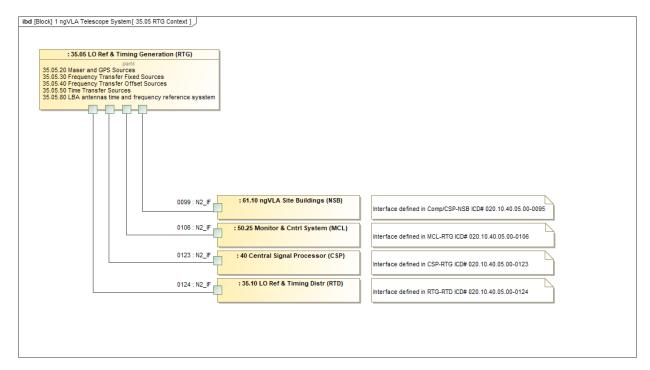


Figure 1: Reference and Timing Generation subsystem product breakdown, interfaces with other antenna subsystems.

Title: ngVLA LO Reference and Timing:	Owner: Shillue	Date: 2022-05-30
Generation and Distribution		
Requirements		
NRAO Doc. #: 020.35.00.00.00-0001-REQ		Version: B

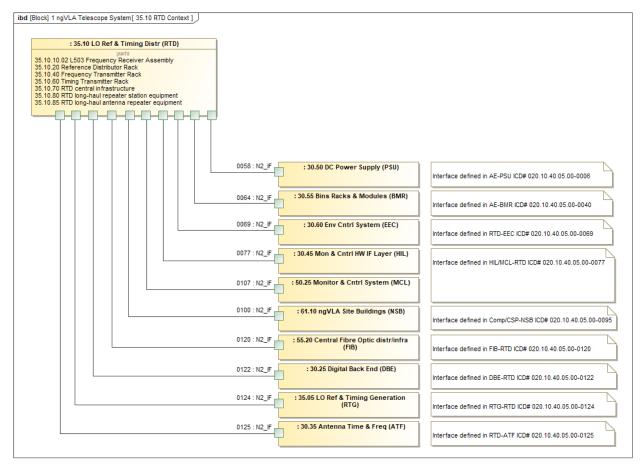


Figure 2: Reference and Timing Distribution subsystem product breakdown, interfaces with other antenna subsystems.

3.4 Key Requirements Summary

Parameter	Summary of Requirement	Reference Requirements
LO Phase Noise	LRT1240	SYS5001, SYS1503,
		CAL0314,[AD30]
LO Phase Drift	LRT1250	SYS5001, SYS1504, SYS1505,
		[AD30]
Timing to CSP	LRTI300	SYS2002, SYS2003, SYS0404,
		[RD04]
Spurious Narrowband	LRT1500	AD[20], SYS2104
Tones		
Mean Time Between	LRT2310	SYS2610, SYS2605, AD11
Failure/Mean Time		
Between Maintenance		

Title: ngVLA LO Reference and Timing:	Owner: Shillue	Date : 2022-05-30
Generation and Distribution		
Requirements		
NRAO Doc. #: 020.35.00.00.00-0001-REQ		Version: B

3.5 Requirements Definitions

Consistent with the Requirements Management Plan [AD02], the following definitions of requirement "levels" are used in the ngVLA program. The requirements in this document are at the L2 subsystem level.

Requirement Level	Definition
LO	User requirements expressed in terms applicable to their needs or use cases (Science Requirements or Stakeholder Requirements)
LI	Requirements expressed in technical functional or performance terms, but still implementation agnostic (System Level Requirements)
L2	Requirements that define a specification for an element of the system, presuming a system architecture (Subsystem Requirements)

3.6 Requirements Flow Down

Individual subsystem specifications (Level 2) flow from the Level I requirements, and may not always be directly attributable to a single system requirement. For example, phase drift specifications at the system level may be apportioned to multiple subsystems, or a subsystem spec may be in support of multiple higher-level requirements. Completeness of the Level 2 requirements is assessed at the requirements review of each subsystem.

While this is a top-down design process, the process is still iterative rather than a "waterfall" or linear process. The feasibility and cost of requirements implementation lead to trade-offs that feedback to higher-level requirements. The end goal is to build the most generally capable system that will support the Key Science Goals within the programmatic constraints of cost and schedule.

Maintaining enumerated and traceable science requirements, system requirements, and subsystem specifications ensures this trade-off process is complete and well understood by the project team. The effect of a change in a subsystem specification can be analyzed at the system level, and thereafter the impact on a specific scientific program can be ascertained.

Title: ngVLA LO Reference and Timing:	Owner: Shillue	Date : 2022-05-30
Generation and Distribution		
Requirements		
NRAO Doc. #: 020.35.00.00.00-0001-REC	Q	Version: B

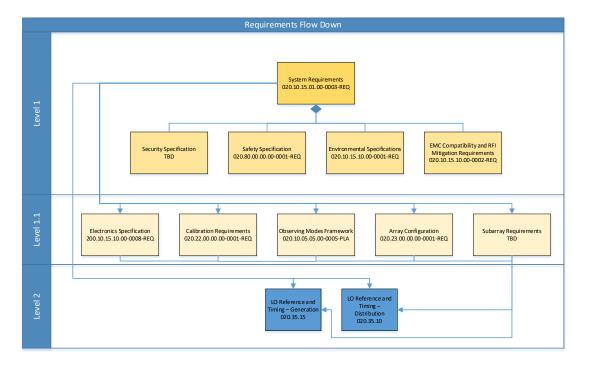


Figure 3: Requirements flow-down to the Antenna Time and Frequency Subsystem Requirements.

3.7 Verb Convention

This document uses "shall" to denote a requirement. The verbs "should" and "must" denote desired but not strictly required parameters. "Will" denotes a future happening. Desired but not required features are noted as "desirable" or "goals."

4 Assumptions

The following assumptions are made in the definition of these subsystem requirements:

- Subsystem requirements apply to performance before any operational calibration corrections are applied unless explicitly stated otherwise.
- Hardware requirements apply to a properly functioning system under the precision operating environmental conditions unless explicitly stated otherwise.
- Hardware requirements assume that all system parts that would normally be in place during observations are working within their respective specifications (e.g., HVAC, RTP system) unless explicitly stated otherwise.
- Notwithstanding the desire that these requirements be implementation agnostic, a set of subsystems is assumed that interfaces with the RTG and RTD subsystems. These are defined and an overview of the interface requirements included in Section 9.
- A receiver and water vapor radiometer are located on the elevated moving structure of the antenna
- A digital backend is located in the antenna pedestal
- The RTG subsystem is nominally located in the Central Electronics building. Annex versions of the RTG will be located at LBA station locations, and possibly for far out MID stations not directly connected to the ngVLA fiber network.

Title: ngVLA LO Reference and Timing:	Owner: Shillue	Date: 2022-05-30
Generation and Distribution		
Requirements		
NRAO Doc. #: 020.35.00.00.00-0001-REQ		Version: B

- The RTD subsystem instances are located at (a) the central building (b) midpoint repeater stations and (c) the antenna stations. For LBA stations and remote MID stations the "central" part of the RTD will be similar but with a much lower fan-out. (For example, at LBA sites, where there are three antenna stations, reference sources and RTD modules will fan-out to each of the three antennas).
- A central hydrogen maser is the master frequency source for the array. For remote antennas where
 referencing to this source is not possible, additional hydrogen masers (or other highly stable reference)
 will be used.
- The master frequency source will serve as the basis for the system timing clock. A counter will
 accumulate time and be compared to a GPS absolute time standard over long intervals (~ I day). This
 accumulated measurement will be recorded and then time counter reset.
- There will be no steering of the master frequency source to track absolute time.

5 Environmental Conditions

The ngVLA Environmental Requirements [AD04] details both environmental conditions and requirements, in general, for the ngVLA as whole. In the Level 2 subsystem requirements documents, like this one, it is necessary to extrapolate and interpret which of these conditions and requirements is applicable. In the case of the RTG and RTD subsystems, this extrapolation relies in most cases primarily on the *location* of the installed equipment.

5.1 Equipment Location

The LO Reference and Timing Generation (RTG) subsystem components will be located entirely within the ngVLA Central building. The LO Reference and Timing Distribution (RTD) Subsystem components will be located in r the ngVLA Central building, in repeater stations between antenna stations, and within or on the Antenna Stations. The RTD equipment associated with the antenna station can be located either: inside the antenna pedestal, or on the elevated (and moving) structure of the antenna. The relation between the RTG and RTD equipment and the structures that they are housed within is shown in Figure 4. In the Central Electronic Building, the equipment and racks are the responsibility of the RTG and RTD subsystem work packages. In the repeater stations, the RTD equipment will be housed in racks supplied by the FIB work package. At the antenna stations the RTD equipment will be housed in racks supplied by the Antenna Electronics IPT, Bins, Modules, and Racks work package, with temperature control delivered by the EEC work package.

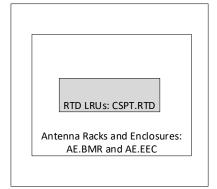
Title: ngVLA LO Reference and Timing:

Generation and Distribution
Requirements

NRAO Doc. #: 020.35.00.00.00-0001-REQ

Owner: Shillue

Date: 2022-05-30


Version: B

RTG LRUS: CSPT.RTGRTD
LRUS: CSPT.RTD

CEB Racks: CSPT.RTG and
CSPT.RTD

RTD LRUS: CSPT.RTD

Repeater Station Racks: FIB

Central Electronics
Building: INF

Long Haul Repeater Station: FIB Antenna Station: ANT IPT

Figure 4: RTG and RTD equipment as-installed location and housing. Shaded items are deliverables of the RTG and/or RTD work packages.

The RTG and RTD equipment must be designed to meet requirements in the environmental conditions of these locations. These conditions will be defined in the relevant ICDs, as shown in Table I below.

	ICD N	Number	Ref	Cubayatam 1	Subavatam 2
	primary	secondary	Kei	Subsystem 1	Subsystem 2
Central Electronics	0095	0099	AD24	Computing/CSPT(RTG)	ngVLA Site Buildings (NSB)
Building	0095	0100	AD24	Computing/CSPT(RTG)	ngVLA Site Buildings (NSB)
Long Haul Repeater Station and Remote Stations	120	n/a	AD26	Central Fiber Infrastructure (FIB)	LO Reference and Timing – Distribution (RTD)
Antonno	0040	0064	AD21	Bins, Modules, and Racks	Antenna Electronics (RTD)
Antenna Station	0069	n/a	AD22	LO Reference and Timing – Distribution (RTD)	Antenna Electronics Environmental Control System (EEC)

Table 1: ICD References for detailed environmental requirements based on equipment location.

5.2 Survival Conditions

The RTD subsystem when installed on an antenna or in a repeater station shall survive without sustaining residual damage the following conditions:

Parameter	Req. #	Value	Traceability
Temperature	LRT0110	–30 C ≤ T ≤ +50 C	ENV0342

All RTD equipment is expected to be housed in a temperature-controlled environment. The operational temperature ranges associated with the deployment will be detailed in [AD22], [AD24], and [AD26]. However, in case of power outage, the survival temperature ranges noted above are applicable.

Title: ngVLA LO Reference and Timing: Generation and Distribution Requirements	Owner: Shillue	Date: 2022-05-30
NRAO Doc. #: 020.35.00.00.00-0001-REQ)	Version: B

5.3 Transportation conditions

All transportation requirements area applicable for LRUs in a configuration of being packaged for regular maintenance transportation.

Parameter	Req. #	Value	Traceability
Packaging for Transportation	LRT0160	All LRT LRUs shall be transported	ETR0503
		using ESD, thermal and vibration	ENV0381
		protective packaging in accordance	ENV0382
		with the System Environmental and	ENV0531
		Electronics Specifications	
Solar Thermal Load	LRT0170	Exposed to full sun, 1200W/m ²	ENV0381
		(within transport cases)	
Transportation Temperature	LRT0180	$-30 \text{ C} \leq \text{T} \leq +60 \text{ C}$ (within	ENV0382
		transport cases)	
General Vibration	LRT0190	Vibration on all three axes, for 60	ENV0531
		minutes.	
Mechanical Shock	LRT0200	LRUs packaged for shipping shall	ENV0582
		survive a mechanical shock level	
		defined in [AD04]. In case of shop	
		replaceable units (SRU), these shall	
		be designed to withstand the drop	
		requirement when they are	
		packaged for shipment within the	
		LRU.	

5.4 Storage Conditions

Parameter	Req. #	Value	Traceability
Packaging for Storage	LRT0210	All LRT LRUs shall be stored using ESD and thermal protective packaging in accordance with the System Environmental and Electronics Specifications	ETR0503
Storage temperature	LRT0212	-20 deg C < T < +50 deg C	ENV0372
Storage humidity	LRT0214	10% < RH < 90%	ENV0373

5.5 Site Elevation

Parameter	Req. #	Value	Traceability
Altitude Range	LRT0220	All LRT elements shall be designed for operation	ENV0351,
		and survival at altitudes ranging from sea level to	[AD22],
		2500 m.	[AD24],
			[AD26]

Equipment using air flow as a means of temperature regulation shall account for reduced air pressure at 2500m.

Title: ngVLA LO Reference and Timing:	Owner: Shillue	Date: 2022-05-30
Generation and Distribution		
Requirements		
NRAO Doc. #: 020.35.00.00.00-0001-REC	2	Version: B

5.6 Environmental Protection Requirements

5.6.1 Seismic

Parameter	Req.#	Value	Traceability
Seismic	LRT0230	The RTG and RTD subsystem shall be designed to	ENV0521
Protection		withstand a low-probability earthquake with up to	
		0.2g peak acceleration in either the vertical or the	
		horizontal axis. Units shall not sustain residual	
		damage under these conditions while in the	
		installed and operational state.	

5.6.2 Lightning, Dust, Fauna, Rain/Water Infiltration and Corrosion Protection

Parameter	Req. #	Value	Traceability
Equipment	LRT0240	Protection against lightning, dust, fauna, solar	ENV0541,
Protection		radiation, rain/water infiltration and corrosion shall	ENV0542,
		be provided by the environmentally controlled	ENV0571,
		facilities or racks in which the RTG and RTD	ENV0591
		elements are installed, as defined by the applicable	
		ICD [AD21], [AD24], [AD26]. No RTG or RTD	
		element shall be installed outside these facilities or	
		racks.	

5.7 Precision Operating Conditions (POC)

The RTG and RTD subsystems shall have precision performance as defined in [AD04] under the following conditions:

5.7.1 Central Electronics Building

Parameter	Req. #	Value	Traceability
Temperature POC	LRT0270	+15 C ≤ T ≤ +25 C	ENV0313, [AD24]
Temperature Rate of Change POC	LRT0280	< 0.2 °C per 300s	ENV0314, [AD24]
Air Flow	LRT0290	Sufficient air flow shall be provided by the central building air handlers to maintain temperature range and stability	ENV0314, [AD24]

[AD24] will specify in further detail the temperature and humidity ranges which will surround the RTG and RTD subsystem LRUs in the central electronics building during precision operating conditions.

Note I: For any LBA sites with a central facility housing RTG and RTD subsystem components, these environmental requirements are applicable.

Note 2: For any annex sites that support standalone timing for MID stations, and thus housing RTG and RTD subsystem components, these environmental requirements are applicable.

Title: ngVLA LO Reference and Timing: Generation and Distribution Requirements	Owner: Shillue	Date: 2022-05-30
NRAO Doc. #: 020.35.00.00.00-0001-REQ)	Version: B

5.7.2 Repeater Stations

Parameter	Req. #	Value	Traceability
Temperature POC	LRT0300	+10 C ≤ T ≤ +30 C	ENV0313, [AD26]
Temperature Rate of Change POC	LRT0310	< 0.5 °C per 300s	ENV0314, [AD26]

[AD26] specifies in further detail the temperature and humidity ranges applicable to RTD subsystem LRUs and subassemblies in the repeater station during precision operating conditions.

5.7.3 Antenna Stations

Parameter	Req.#	Value	Traceability
Temperature POC	LRT0320	FEC: Tmin < T < Tmin+5.0 deg C;	ENV0313, [AD22]
		Tmin=5-10 deg C	
		Pedestal: Tmin < T < Tmin+15.0 deg C;	
		Tmin=5-10 deg C	
Temperature Rate	LRT0330	< 0.5 °C per 300s	ENV0314, [AD22]
of Change POC			_

[AD22] specifies in further detail the temperature and humidity ranges which will surround the RTD subsystem LRUs and subassemblies in the antenna station during precision operating conditions.

5.8 Normal Operating Conditions (NOC)

The RTG and RTD subsystem shall have normal performance as defined in [AD04] under the following outside ambient conditions:

5.8.1 Central Electronics Building

Parameter	Req. #	Value	Traceability
Temperature NOC	LRT0340	+15 C ≤ T ≤ +25 C	ENV0323, [AD24]
Temperature Rate of	LRT0350	< 0.5 °C per 300s	ENV0324, [AD24]
Change NOC			
Air Flow	LRT0360	Sufficient air flow shall be provided by the central building air handlers to maintain temperature range and stability	ENV0324, [AD24]

[AD24] will specify in further detail the temperature and humidity ranges which will surround the RTG and RTD subsystem LRUs in the central electronics building during normal operating conditions.

Note I: For any LBA sites with a central facility housing RTG and RTD subsystem components, these environmental requirements are applicable.

Note 2: For any annex sites that support standalone timing for MID stations, and thus housing RTG and RTD subsystem components, theseenvironmental requirements are applicable.

Title: ngVLA LO Reference and Timing:	Owner: Shillue	Date : 2022-05-30
Generation and Distribution		
Requirements		
NRAO Doc. #: 020.35.00.00.00-0001-REC	2	Version: B

5.8.2 Repeater Stations

Parameter	Req. #	Value	Traceability
Temperature NOC	LRT0370	+10 C ≤ T ≤ +30 C	ENV0323, [AD26]
Temperature Rate of Change NOC	LRT0380	< 0.5 °C per 300s	ENV0324, [AD26]

[AD26] specifies in further detail the temperature and humidity ranges applicable to RTD subsystem LRUs and subassemblies in the repeater station during normal operating conditions.

5.8.3 Antenna Stations

Parameter	Req. #	Value	Traceability
Temperature NOC	LRT0390	FEC: Tmin < T < Tmin+5.0 deg C; Tmin=5-10 deg C Pedestal: Tmin < T < Tmin+15.0 deg C; Tmin=5-10 deg C	ENV0323, [AD22]
Temperature Rate of Change NOC	LRT0400	< 0.5 °C per 300s	ENV0324, [AD22]

[AD22] specifies in further detail the temperature and humidity ranges which will surround the RTD subsystem LRUs and subassemblies in the antenna station during normal operating conditions.

5.9 Limits to Operating Conditions (LOC)

The RTG and RTD subsystem shall be able to operate for extended periods without sustaining residual damage and without meeting performance under the following outside ambient conditions, applicable to equipment in any location.

Parameter	Req. #	Value	Traceability
Temperature LOC	LRT0410	+5 C ≤ T ≤ +30 C	ENV0332, [AD22], [AD24], [AD26]

[AD22], [AD24] and [AD26] specify in further detail the temperature and humidity ranges applicable to RTG and RTD equipment under limit conditions.

5.10 Standby Conditions

The RTG and RTD subsystem shall be put into standby mode when ambient standby environmental conditions noted below are present. While in standby, the system shall remain capable of resuming operation within five minutes of conditions returning to within the Limits of the Operating Conditions. Should the environment then reach the Normal Operating Conditions, the system shall perform to the performance specifications associated with that environment.

Parameter	Req. #	Value	Traceability
Temperature LOC	LRT0420	+25 C ≤ T ≤ +45 C	ENV0362, [AD22],[AD24], [AD26]

[AD22], [AD24] and [AD26] specify in further detail the temperature and humidity ranges applicable to RTG and RTD equipment under standby conditions.

Title: ngVLA LO Reference and Timing:	Owner: Shillue	Date : 2022-05-30
Generation and Distribution		
Requirements		
NRAO Doc. #: 020.35.00.00.00-0001-REC	2	Version: B

6 Subsystem Requirements

Requirements for the RTG and RTD subsystem are listed below, with requirements encoded as follows:

- Parameter: Short (unique) name for the requirement.
- Req. #: Unique requirement number per [AD02]. The format is LRTNNNN where LRT is an abbreviation for "LO Reference and Timing" and NNNN is a four digit number typically starting with 0001. Note that requirements can be applicable to either LO Reference and Timing Generation (RTG) or LO Reference and Timing Distribution (RTD) or to both.
- Value: Textual description of the requirement.
- <u>Traceability</u>: Identifies which higher-level requirement(s) this specific requirement is derived or copied from.

6.1 General

Parameter	Req. #	Value	Traceability
Number of	LRTI100	RTD subsystem distribution shall be	SYS1001, SYS1021
Antennas		provided to support at least 263 antennas	
Antenna	LRTIII0	The RTD subsystem shall support the final	RD05
Stations		antenna station configuration. All	
Configuration		configuration studies have in common: a	
		more dense array of close in (0-2 km	
		spacing), extended arms with lower	
		density out to ~30 km, and further arms	
		with greater spacing out to ~800km.	
		Finally, long baseline on continental scale.	
Maximum	LRTI120	300 km. Goal 1000 km	SYS1301, RD05
Fiber Length			
Connected vs	LRTII30	LBA stations will have standalone time and	SYS1301,SYS1306,
Independent		frequency sources. Select MID stations	SYS1309
Stations		beyond 300km <i>may</i> have standalone time	3131307
		and frequency sources.	
Number of	LRT1140	The RTD subsystem shall support a	SYS0601, SYS0603
Subarrays		minimum of ten subarrays	
Subarray	LRT1150	Subarrays shall be able to be created,	SYS0607, SYS0608
Creation and		assigned, and re-assigned flexibly, without	
Modification		disturbing active observing.	

Maximum Fiber Length: The longest baseline requirement is > 700km. The Rev D layout to support this includes stations out to 800 km from the center of the array. Adding 25% for deviations from line-of-sight, the fiber distance to support this will be 1000 km. Many factors like borders, difficult terrain, and expense may prevent the extension of the fiber to these stations. Thus, we require fiber connectivity up to 300 km. Beyond that, a cost-performance study will determine if the stations are connected or standalone.

Subarrays: Three possible design architectures are shown below in Figure 5. In (A) the LO frequency and any frequency offset are generated in the central building and split to many antennas. To support the ten subarray requirement for this configuration, then, there would need to be at least ten of the frequency generation functions. And to support completely flexible subarraying they would each need to have the

Title: ngVLA LO Reference and Timing: Generation and Distribution	Owner: Shillue	Date : 2022-05-30
Requirements		
NRAO Doc. #: 020.35.00.00.00-0001-REC)	Version: B

maximum number (N) of outputs (i.e. ~ 263) with a switching network to map sources to subarrays. (ALMA used this configuration with 6 subarrays, 66 antennas). For architecture B or C, there are more frequency generation functional units (one per antenna), the only difference being if they are located centrally or at the antenna. In either case they are mapped one-to-one with the antennas, and there is no need for a hardware subarray switch function. In these later two cases, the flexible subarraying requirement is met with no restriction on number of subarrays. Note that reassignment of an antenna shall not require length tuning or settling of the LOs or offset frequencies.

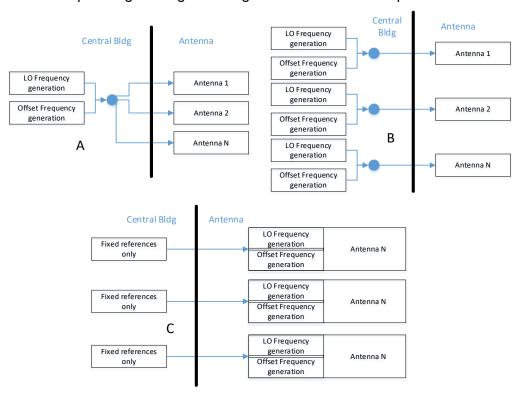


Figure 5: How design choice of RTD architecture impacts configuring of subarrays: (A) Frequencies setup centrally and split to all antennas (B) Frequencies setup centrally but mapped one-to-one with antennas (C) Central reference only. Frequencies setup at antenna, also mapped one-to-one with antennas.

6.2 Frequency

Parameter	Req. #	Value	Traceability
LO Frequency	LRT1200	LO frequencies shall be provided to support	SYS0801,
Ranges		downconversion (except instances of direct	SYS0803,
_		conversion). These shall fall in or near to the range of	SYS0804,
		sky frequencies required for ngVLA: 1.2—8 GHz, 8-50	SYS0805,
		GHz, and 70-116 GHz. Fixed or tunable LOs must allow	SYS0806,
		for continuous frequency coverage across these spans.	SYS0903,
		Additionally, the design plan must allow for	SYS0905,
		simultaneously multiple LOs in a given receiver band so	[AD30]
		that the full available instantaneous downstream	
		processing bandwidth can be achieved, and so that	
		discontinuous portions of a band may be selected.	

Title: ngVLA LO Reference and Timing:	Owner: Shillue	Date: 2022-05-30
Generation and Distribution		
Requirements		
NRAO Doc. #: 020.35.00.00.00-0001-REC	2	Version: B

Parameter	Req. #	Value	Traceability
Simultaneous LOs	LRT1205	All LOs in a particular receiving band must be simultaneously available	SYS0903, SYS0905
LO Frequency Offsets	LRT1210	Nominal LO frequencies must be capable of frequency offsetting on a per antenna basis	SYS2105, SYS0603, SYS2217, [AD30]
Tuning Resolution	LRT1220	The LO shall be tunable if necessary to cover the required full frequency spans. If tuning is required, the resolution shall be 250 MHz or less.	SYS0906, SYS0907, [AD30]
Switching Speed	LRT1225	Frequency switching between or within a band shall be accomplished in < 1.5 s. The switching time is defined as time to reach full performance	SYS0908, [AD30]
RTD Input Frequencies from RTG	LRT5210	RTG shall supply 1 PPS and a stable reference frequency to the RTD subsystem	[AD29]
RTD Input Frequency Accuracy from RTG	LRT5220	The frequency reference supplied from RTG to the RTD subsystem must have long term accuracy from T=1 to 1000 seconds T=1 sec AV<=2e-13 T=100 sec AV<=1e-14 T=1e3 sec AV<=2e-15	[AD29]
RTD Frequency Input Stability from RTG	LRT5230	Phase Noise at offset frequency from 1 Hz to 100 MHz < 50 fsec, goal < 30 fsec rms integrated phase noise	[AD29]
RTD Frequency Input Signal Type from RTG	LRT5240	Signal interface between RTG and RTD per [AD29]	[AD29]
ATF Frequency Input Tuning Resolution	LRT5250	If the ATF frequency input from RTD has a tunable component, then the frequency resolution shall follow the specifications in [AD30]	[AD30]
ATF Input Frequencies	LRT5260	The ATF input frequency (-ies) shall follow the specifications in [AD30]	[AD30]
ATF Input Frequency Accuracy	LRT5270	The ATF frequency accuracy shall be less than that implied by LRT 1250 and shall follow the specifications in [AD30]	[AD30]
ATF Frequency Input Phase Noise	LRT5280	The ATF frequency input phase noise shall follow the specifications in [AD30]	[AD30]
ATF Frequency Input Signal Type	LRT5290	The ATF frequency input signal type shall follow the specifications in [AD30]	[AD30]

Title: ngVLA LO Reference and Timing:	Owner: Shillue	Date: 2022-05-30
Generation and Distribution		
Requirements		
NRAO Doc. #: 020.35.00.00.00-0001-REC	2	Version: B

Parameter	Req. #	Value	Traceability
ATF Frequency	LRT5300	The ATF frequency input signal level shall follow the	[AD30]
Input Signal		specifications in [AD30]	
Level			
CSP Input	LRT5310	The CSP frequency input from RTD shall have phase	[AD28]
Frequency		noise following the specifications in [AD28]	
CSP Input	LRT5320	The CSP frequency input accuracy shall follow the	[AD28]
Frequency		specifications in [AD28] and be no worse than	
Accuracy		T=1 sec AV<=2e-13	
		T=100 sec AV<=1e-14	
		T=1e3 sec AV<=2e-15	
CSP Frequency	LRT5330	The CSP frequency input signal type shall follow the	[AD28]
Signal Type		specifications in [AD28]	
CSP Frequency	LRT5340	The CSP frequency input signal level shall follow the	[AD28]
Signal Level		specifications in [AD28]	
DBE Input	LRT5350	The DBE frequency input from RTD shall follow the	[AD27]
Frequency		specifications in [AD27]	
DBE Frequency	LRT5360	The DBE frequency input accuracy shall follow the	[AD27]
Input Accuracy		specifications in [AD27]	
DBE	LRT5370	The DBE frequency input phase noise shall follow the	[AD27]
Frequency		specifications in [AD27]	
Input Phase			
Noise			
DBE Frequency	LRT5380	The DBE frequency input signal type shall follow the	[AD27]
Signal Type		specifications in [AD27]	
DBE Frequency	LRT5390	The DBE frequency input signal level shall follow the	[AD27]
Signal Level		specifications in [AD27]	· .

LO Frequency Ranges, Tuning Resolution, Switching Speed: RTG and RTD subsystems are nominally responsible for supplying reference frequencies to the ATF subsystem, which in turn is responsible for supporting the LO tuning range, tuning resolution, and switching speed. These requirements are included in case an architecture is developed which includes some aspect of the LO tuning in the reference transmission.

LO Frequency Offsets: Most recent design includes provision of in increments of 15.68 kHz, with an individual antenna offset = m*15.68 kHz, $m = \{-131, -130,...,-1,0,1,...130,131\}$. Support for this requirement can be implemented by either RTD or ATF subsystem [RD 04]

6.3 Phase

Parameter	Req. #	Value	Traceability
LO Phase Noise	LRT1240	< 76 fs integrated from 1 Hz to maximum	SYS5001, SYS1503,
		IF frequency offset	CAL0314, [AD30]
		Goal is < 50 fs	
LO Phase Drift	LRT1250	< 42 fs at 300 s (linear term removed)	SYS5001, SYS1504,
		< 250 fs (absolute)	SYS1505, [AD30]

Title: ngVLA LO Reference and Timing:	Owner: Shillue	Date : 2022-05-30
Generation and Distribution		
Requirements		
NRAO Doc. #: 020.35.00.00.00-0001-REC	2	Version: B

Parameter	Req. #	Value	Traceability
Digitizer Clock	LRT1260	< 76 fs integrated from 1 Hz to maximum	SYS5001, SYS1503,
Phase Noise		IF frequency offset	CAL0314, [AD30]
		Goal < 50 fs	
Digitizer Clock	LRT1270	< 42 fs at 300 s (linear term removed)	SYS5001, SYS1504,
Phase Drift		< 250 fs (absolute)	SYS1505, [AD30]
Return to Phase	LRT1280	Any derived LO or timing signal shall return to phase upon change in frequency from F_1 to F_2 to F_1	SYS0602, [AD30]

These system level phase critical requirements must be fulfilled by elements of the Antenna Time and Frequency subsystem (ATF). However, the ATF is in turn dependent upon receiving accurately phased reference signals from the RTD subsystem. The drift and noise stability that is required at the RTD-ATF interface will be carefully detailed in the ICD [AD30]. Generally, the stability of the reference needs to be better than the output clock/LO, at least in offset frequency regimes where there is perfect tracking (i.e. within phase lock loop bandwidths). Thus, the RTD frequency reference may be allowed significant additional phase noise at high offset frequencies, that is, at offset frequencies higher than the antenna based oscillator phase lock loop.

Note I: LRT1240 specifies the rms phase noise integrated up to the maximum IF frequency. In practice, it is seldom the case for an oscillator to have significant phase noise contribution above ~ 10 or 20 MHz. Whereas in the most recent design the IF frequency goes to 2.9 GHz. Therefore it is sufficient to measure only up to the maximum offset frequency at which non-negligible contribution to phase noise occurs, for the particular oscillator type used in the design.

Note 2: LRT1280 shall be verified by implementing a frequency switching test set, with repeated switch cycles frequency from F_1 to F_2 to F_1 over a long period (one hour or more). The phase measurement at F_2 is then thrown out, and the phase samples measured at F_1 are kept. The linear drift may be removed from these samples and then the resulting concatenated phase time series shall meet the LRT1250 requirement of 42 fsec RMS averaged at 300 seconds.

6.4 Timing

The requirement for accurate array timing impacts the Central clocks, the distribution of the clocks to the CSP, and the distribution of the clocks to the antennas. These are discussed below. In addition to ngVLA Systems Requirements [AD03], [RD04] provides guidance on the context of these requirements.

The two driving systems requirements are:

- **Temporal Accuracy (SYS2002):** Data Product timestamps must be referred to an absolute time standard (e.g., GPS or TAI) with an error of less than 10 ns (goal of 1 ns).
- Timestamp Corrections (SYS2003): Timestamps may be applied or corrected retroactively (i.e., it is not necessary for it to be known in real time.) Any timestamp corrections shall be made through a metadata table that is incorporated into the data model.

We further posit the existence of three main clock domains:

 A central system clock domain: referenced to an absolute time standard and implemented in the RTG subsystem

Title: ngVLA LO Reference and Timing: Generation and Distribution	Owner: Shillue	Date : 2022-05-30
Requirements		
NRAO Doc. #: 020.35.00.00.00-0001-REC	Version: B	

- A CSP clock domain
- An antenna clock domain: unique to each antenna

Requirements are given below for the central building and the antenna stations. For remote stations not connected by optical fiber for LO and Timing (such as LBA stations, or the more remote MID-stations), there will be a secondary instantiation of the central building with and RTG subsystem and central system clock domain. One or more stations connected to these will have a round trip corrected frequency reference serving as the basis for remote antenna clock domains. All of the requirements in Section 6.4.1 and 6.4.2 are therefore also applicable to these secondary RTG/clock systems.

Note that the SYS2002 requirement will require the development of a system budget allocating contributions to the 10 nsec. A preliminary budget is detailed in [RD04] including the 2 nsec requirements given below in LRT1300 or LRT1360, applicable to timestamp accuracy.

6.4.1 Central Building

Parameter	Req. #	Value	Traceability
Timing to	LRTI300	Timing accuracy to CSP shall be within 2 nsec (goal of I	SYS2002,
CSP		nsec)	SYS2003,
		Relative to the central system clock on short timescales	SYS0404,
		and relative to the absolute timing standard over 1-day	[RD04]
		averaging	
		Note: If data timestamps are tagged at the antenna, this	
		requirement can be relaxed	
Timing signal	LRTI310	CSP Timing signal type shall follow specifications in	[AD28]
type to CSP		[AD28]	
Timing Signal	LRT1320	CSP Timing signal level shall follow specifications in	[AD28]
level to CSP		[AD28]	
Timing to	LRT1330	Network time shall meet the requirements detailed in	[AD25]
CSW		[AD25]	
Timing	LRT1340	Timing accuracy to CSP shall be within 2 nsec (goal of I	SYS2002,
Accuracy		nsec)	[RD04],
from RTG to		Note: this is an interface tracking requirement. This	[AD29]
CSP		requirement is the same as LRT1300 assuming CSP	
		timing is fully determined by the RTG subsystem	
RTD Timing	LRT1350	Timing accuracy to RTD shall be within 1 nsec. Note:	[AD29]
Stability from		this is an interface tracking requirement.	
RTG			

6.4.2 Antenna Stations

Parameter	Req. #	Value	Traceability
Time Accuracy –	LRT1355	The relative difference between local antenna time	SYS2002,
Antenna Station		and the system clock shall not exceed ±5 µs.	SYS2003,
Functions		This requirement is for relative accuracy of antenna	SYS0404,
		tracking, switched power, and fringe search	[RD04]
		functions.	-

Title: ngVLA LO Reference and Timing:	Owner: Shillue	Date : 2022-05-30
Generation and Distribution		
Requirements		
NRAO Doc. #: 020.35.00.00.00-0001-REC	2	Version: B

Parameter	Req. #	Value	Traceability
Antenna Timing	LRT1357	The antenna clock domain shall be stable relative to the antenna LO reference to within I ns. This requirement supports synchronization of LO, digitizer and antenna timing signal.	SYS2002, SYS2003, SYS0404, [RD04]
Subarray timing	LRTI360	Timing correction of at least one antenna per subarray shall be supplied by measurement or active correction to within 2 nsec for support of accurate data timestamping. The requirement is relative to the central system clock on short timescales and relative to the absolute timing standard over 1-day averaging.	SYS2002, SYS2003, SYS0404, SYS0603, [RD04]
ATF Timing from RTD	LRT1370	As specified in [AD30] and LRT1350	[AD30], [RD04]
DBE Timing from RTD	LRTI380	As specified in [AD27] and LRT1350	[AD27], [RD04]

LRT1355:

The antenna timing is constrained by at least three functional needs:

- Antenna tracking: Timing accuracy <= 660 us
- Switched Power: Timing accuracy <=50 us
- Fringe search: Timing accuracy <=50 us

These three needs, inclusive of some design margin, lead to a requirement for the timing of the antenna system to not deviate from the system clock by more than about 5 μ s. i.e., the relative difference between local antenna time and the system clock shall not exceed ± 5 μ s. This requirement must be met by the hardware alone, before the application of time corrections (online or offline) derived from astronomical calibration. We note that this is within the capabilities of the IEEE 1588 Precision Time Protocol.

LRT1357:

The design implementation will use the antenna station frequency reference to derive the antenna station timing signal. Therefore, to within the accuracy of cable drifts and/or edge jitter the antenna station references are all synchronized.

LRT1360:

Additionally, there is a need for accurate timing by either model, measurement, or active correction to at least one reference antenna in any given subarray. To fully satisfy SYS0603 (Arbitrary subarraying) the design will be implemented with an accurate timing correction to every fiber connected antenna.

6.5 Modes

Parameter	Req. #	Value	Traceability
Standby Mode	LRT1400	A low power standby mode shall be	SYS0010, SYS0011,
		available for all RTG and RTD modules.	SYS9990, ETR0809,
		Monitor and Control shall remain	ETR0810
		operational in this mode	

Title: ngVLA LO Reference and Timing:	Owner: Shillue	Date : 2022-05-30
Generation and Distribution		
Requirements		
NRAO Doc. #: 020.35.00.00.00-0001-REC	2	Version: B

Parameter	Req.#	Value	Traceability
Automatic	LRTI4I0	RTG and RTD modules shall automatically	SYS0011, SYS2304,
Initialization		boot into standby mode on power-up,	SYS3114, ETR0811
		absent any command from M&C.	
Operating	LRT1420	Any functional operating mode can be	SYS0010
Modes		reached by command from Standby Mode.	

6.6 Spurious/RFI

6.6.1 Signal Path Spurious

Parameter	Req. #	Value	Traceability
Spurious	LRT1500	Within 3.5 GHz of carrier < -103 dBc.	[AD20],
Narrowband		Spurious narrowband tones introduced in the RTD	SYS2104
Tones		frequency references can potentially appear in the	
		antenna station LO system. Careful design should be	
		made to limit this effect. Antenna LO has very stringent	
		spurious requirement. For any reference signals	
		developed by the RTD subsystem, the maximum	
		acceptable spurious level shall be specified in the RTD-	
		ATF ICD [AD30].	

Spurious Narrowband Tones: Spurious narrowband tones introduced in the RTD frequency references can potentially appear in the antenna station LO system. Careful design should be made to limit this effect. Antenna LO has very stringent spurious requirement. For any reference signals developed by the RTD subsystem, **the maximum acceptable spurious level shall be specified in the RTD-ATF ICD [AD30]**. The level indicated above is derived from a level that would be harmful if passed directly to the LO downconverter. Thus, if the RTD subsystem design, or the ATF design at the RTD interface includes a mitigating filtering effect (such as a phase locked loop), the acceptable level could be higher than -103 dBc.

6.6.2 Spurious RFI Emission – Discussion

EMC0310 specifies spurious emission level versus frequency for spectral line and continuum emission. For the RTG and RTD subsystems these are both applicable but spectral line emission is likely to be the greater concern due to the transmission and distribution of continuous-wave frequency sources and offset frequency synthesis.

For reference, the spectral line emission requirement from [AD05] is shown below (reformatted). The columns reflecting 10m distance match [AD05] and would be pertinent for equipment located in the antenna pedestal. For equipment at the secondary focus (nearly co-located with the receiver, the numbers have been reworked to reflect lower acceptable limits (by 20 dB). For equipment located in the central electronics building, the acceptable limits are higher by 14 dB, just using path loss assumptions (50m is the closest antenna to the central building and thus the worst case).

Title: ngVLA LO Reference and Timing:	Owner: Shillue	Date: 2022-05-30
Generation and Distribution		
Requirements		
NRAO Doc. #: 020.35.00.00.00-0001-REC	2	Version: B

			Central building 50m		al 10m	_	ry Focus m
	BW						
Freq	(kHz)	EIRP	dBm/Hz	EIRP	dBm/Hz	EIRP	dBm/Hz
1	0.3	-115	-104	-129	-124	-149	-144
3	1	-101	-95	-115	-115	-135	-135
6	2	-92	-89	-106	-109	-126	-129
10	3	-86	-85	-100	-105	-120	-125
30	10	-70	-74	-84	-94	-104	-114
45	15	-64	-70	-78	-90	-98	-110
90	30	-53	-62	-67	-82	-87	-102

Table 2: Spectral Line emission limits from [AD05].

Table 2 is used in the formulation of the requirements in Sections 6.6.3, 6.6.4, and 6.6.5. Shielding levels may be required to meet the limits detailed there. In the central building the shielding can be provided at the building, room, rack, or module level. If at the building or room level, it would be included in the appropriate ICD [AD24]. In the antenna station, custom shielded modules are anticipated, and this would be included in the ICD with the Antenna Electronics Bins, Modules, and Racks work package [AD21].

The graph show in Figure 6 shows the permitted emission level versus frequency for a wide range of frequencies expected for ngVLA. Not all of these frequencies may be in use by the RTG or RTD subsystem. Note that below 2 GHz a maximum level of -136 dBm/kHz (secondary focus), -116 dBm/kHz (pedestal), -102 dBm/kHz (central building) is permitted.

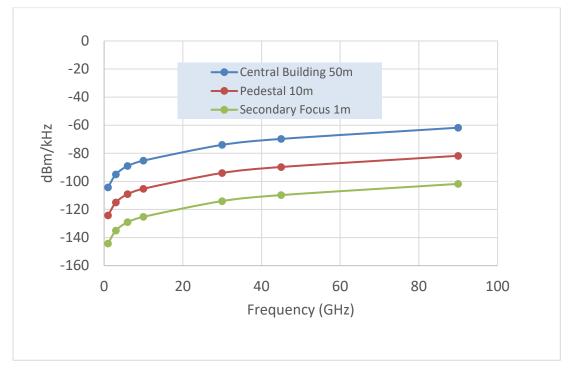


Figure 6: Emitted power level from antenna station located RTD equipment for two locations in or on the antennas.

Title: ngVLA LO Reference and Timing: Generation and Distribution Requirements	Owner: Shillue	Date: 2022-05-30
NRAO Doc. #: 020.35.00.00.00-0001-REQ)	Version: B

Spurious Emission Impacting IRD and ATF:

Note that in the secondary focus enclosure, direct coupling to the LO or IRD modules without benefit of shielded enclosure may be possible. Special design consideration shall be given to this possibility, minimizing opportunity of spurious emissions particularly at harmonics of clock and oscillator frequencies of the RTD.

Parameter	Req. #	Value	Traceability
Emission Verification	LRT1610	Spurious signal emission levels shall be verified	SYS2104,
Frequencies		by test over a minimum range of I GHz up to	EMC0311
		12 GHz. Modules or devices that may contain	
		frequency content above 12 GHz shall be tested	
		at least up to 50 GHz.	
Low Frequency	LRT1620	Spurious signal emission levels shall be quantified	SYS2104,
Emission		by test over an extended frequency range of 5	SYS5602,
		MHz to I GHz. While there is no emission	EMC0312
		threshold within this range, this information shall	
		be collected to inform future system expansion.	
RFI suppressing	LRT1630	RFI Suppression housings shall be used to	[AD21]
housings		contain and suppress spurious emissions, in	
		order to meet the requirements	

6.6.3 Central Building

Parameter	Req. #	Value	Traceability
Spurious Signal Level	LRT1602	Spurious signals generated by the system shall	SYS2104,
Emission – Central		not exceed the equivalent isotropic radiated	EMC0310
Building		power limits specified in Table 2 and Figure 7	[AD24]

6.6.4 Spurious RFI Emission – Repeater Stations

Parameter	Req. #	Value	Traceability
Spurious Signal Level	LRT1604	Spurious signals generated by the system shall	SYS2104,
Emission		not exceed the equivalent isotropic radiated	EMC0310
		power limits specified in Table 2 and Figure 6.	[AD26]
		The allowable emission level shall be derived by	_
		accounting for the distance from the repeater	
		station to the nearest antenna station.	

Title: ngVLA LO Reference and Timing:	Owner: Shillue	Date : 2022-05-30
Generation and Distribution		
Requirements		
NRAO Doc. #: 020.35.00.00.00-0001-REC	2	Version: B

6.6.5 Spurious RFI Emission – Antenna Stations

Parameter	Req. #	Value	Traceability
Spurious Signal Level Emission — Antenna Station	LRT1600	Spurious signals generated by the system shall not exceed the equivalent isotropic radiated power limits specified in [AD05], as elaborated in Table 2 and Figure 7. Note that different allowable emission level is applicable to modules in the pedestal vs at the secondary focus.	SYS2104, EMC0310 [AD21], [AD29]
Spurious Emission impacting IRD	LRT1605	Spurious signals generated by the system shall not exceed the equivalent isotropic radiated power limits specified in [AD05]. See note Section 6.6.2 "Spurious Emission Impacting IRD, ATF."	SYS2104, EMC0310, [AD21], [AD29]
Spurious Emission impacting ATF	LRT1608	Spurious signals generated by the system shall not exceed the equivalent isotropic radiated power limits specified in [AD05]. See note Section 6.6.2 "Spurious Emission Impacting IRD, ATF."	SYS2104, EMC0310, [AD21], [AD29]

6.7 Monitor and Control

Parameter	Req. #	Value	Traceability
Self-	LRT1635	The RTG and RTD subsystem shall measure, report	SYS2405,
Monitoring		and monitor a set of parameters that allow for	SYS2406,
		determination of its status and may help predict or	SYS2601,
		respond to failures. This shall include but not be	SYS3101
		limited to on/off status, power levels, frequency lock	
		status, and bias voltages.	
LRU Alerts	LRT1640	A subsystem alert shall be generated when an RTG or	SYS3102
		RTD LRU has an abnormal condition or failure.	
High-Cadence	LRT1650	The M&C interface shall be fast enough to support	SYS3105,
Monitoring		streaming of diagnostic data. This shall be applicable in	SYS2408
		operational mode without affecting other	
		performance requirements.	
LRU Hot	LRT1660	RTG or RTD LRUs intended for field replacement	SYS3111
Swapping		shall be hot-swappable by design, and recover with	
		minimal intervention by maintenance and operations	
		staff.	
Remote	LRT1670	Firmware in embedded processors and configuration	SYS3223,
Updates		data in FPGAs shall be updateable remotely, in-situ.	ETR0907
Automatic	LRT1680	The RTG or RTD subsystem shall be capable of	SYS3114
Configuration		reaching an operationally-ready Standby state after a	
on Restart		full power cycle without human intervention.	
Front End	LRT1690	The RTG or RTD subsystem shall include an	SYS2407
Engineering		engineering console to display status and aid in real-	
Console		time problem diagnosis.	

Title: ngVLA LO Reference and Timing:	Owner: Shillue	Date : 2022-05-30
Generation and Distribution		
Requirements		
NRAO Doc. #: 020.35.00.00.00-0001-REC	2	Version: B

Parameter	Req. #	Value	Traceability
M&C	LRT1700	All DC powered LRUs and complex programmable	ETR0909
Commanded		devices shall be provided with a physical reset line	
Reset for DC		connected to a local M&C device to allow remote	
Powered		reset commands to be sent. This could be	
Devices		implemented as a ganged reset to all devices in an	
		LRU or as individual lines to each device (or group of	
		devices) as determined by the designer.	
M&C	LRT1710	All AC powered LRUs shall be connected to a	ETR0912
Commanded		remotely controllable Power Distribution Unit (PDU)	
Reset for AC		or similar device which can be remotely commanded	
Powered		via the M&C system to power cycle each individual	
Devices		device.	

With regard to the self-monitoring, alerts, and high cadence monitoring: these requirements may be satisfied by:

- an RTG or RTD LRU alone, in a module which has the onboard intelligence to report status and/or alarms
- by a combination of the RTG or RTD modules and the hardware interface layer as specified in [AD23]

6.8 Lifecycle

Parameter	Req. #	Value	Traceability
Design Life	LRT1800	The integrated modules shall be designed to be operated	SYS2801,
		and supported for a period of 30 years.	ETR0903
Lifecycle	LRT1810	The RTG and RTD design shall minimize its lifecycle cost	SYS2802
Optimization		for 30 years of operation.	
Parts	LRT1820	Parts selection and procurement criteria shall include:	SYS2803,
Selection		a. Sustainability and environmental impact	SYS2805,
and		b. Adequate Supply of critical spares for array	SYS2812,
Procurement		lifecycle	ETR0901,
Criteria		c. Risk mitigation against parts obsolesce and long	ETR0902
		term availability	
Packaging	LRT1830	When applicable, shipping cases and packaging shall be	SYS3904
Supply		supplied for transportation and storage of RTG and RTD	SYS3905
		elements in compliance with LRT0160 packaging for	SYS3912
		transport requirement	
Quality	LRT1840	Stand-alone acceptance testing of software and hardware	SYS3702
Control of		deliverables shall occur before delivery and installation on	
Deliverables		the array.	
Test	LRT1850	Test fixtures and procedures shall be provided for RTG	SYS2811
Fixtures		and RTD subsystem verification tests	
Testing of	LRT1860	All software and firmware shall be delivered with	SYS2814
Software and		automated unit, integration, and regression testing suites.	
Firmware			
AIV	LRT1870	Development tools, compilers, source code, and the build	SYS2815
Software		system shall be delivered to enable maintenance over the	
Tools		life of the facility.	

Title: ngVLA LO Reference and Timing: Generation and Distribution	Owner: Shillue	Date: 2022-05-30
Requirements		
NRAO Doc. #: 020.35.00.00.00-0001-REC	2	Version: B

Parameter	Req. #	Value	Traceability
Incremental	LRT1880	Operational capabilities and modes shall be made	SYS2830
Delivery to		available in stages during the transition from construction	
Operations		to full operations. For the RTG and RTD subsystems, this	
		might imply a limited build-out of the distribution	
		network in the first years(s) to keep pace ahead of	
		antenna deliveries. Full support for LBA stations can be	
		staged according to the overall remote station	
		deployment schedule.	

Accounting for product development, integration, and array commissioning, it is reasonable to target a 30-year minimum overall lifetime.

Lifecycle costs include manufacturing, transportation, construction/assembly, operation, and decommissioning.

6.9 Configuration

The following table lists the configuration management requirements applicable to the RTG and RTD subsystem equipment.

Parameter	Req.#	Value	Traceability
Serial Numbers	LRT1900	Each LRU shall have both a visible and electronic serial number.	SYS3600
Version Control for Software and Firmware	LRT1910	All custom software and firmware delivered as part of the RTG or RTD subsystem shall be version controlled via a configuration management process.	SYS3602
Configuration Retrieval	LRT1920	Any configurable equipment shall retrieve its hardware configuration immediately after installation and power up.	SYS3603
Physical Tracking	LRT1930	Any hardware deliverable or equipment not connected to the M/C subsystem shall be equipped with a physical tracking label or device (bar code or RFID tag), to allow quick and unique identification.	ETR0404
Remote Identification	LRT1940	The RTG and RTD modules shall report the following information to the M&C system, to the extent applicable, upon request: 1. Module/Model Number 2. Serial Number 3. CID Number 4. Hardware Revision Level 5. Software Revision Level 6. Firmware Revision Level Note that the software and firmware revision codes together represent a configuration that is tracked under version control	SYS3600, ETR0403

Title: ngVLA LO Reference and Timing:	Owner: Shillue	Date : 2022-05-30
Generation and Distribution		
Requirements		
NRAO Doc. #: 020.35.00.00.00-0001-REC	2	Version: B

Parameter	Req. #	Value	Traceability
Documentation	LRT1950	Clear and complete documentation shall be delivered with the RTG or RTD LRUs and equipment, meeting project format and standards	SYS6001- SYS6005

6.10 EMC/Immunity

ngVLA standards for Electromagnetic Compatibility and Immunity are developed and described in [AD03], [AD05], and [AD09].

Parameter	Req. #	Value	Traceability
Analog shielding	LRT2200	Analog electronics, especially those containing oscillators and amplifiers, shall be shielded so that emission limits can be met. Careful EMC design shall limit conducted emission between and among subsystems – including by power supply wiring or ground loops.	SYS2106, SYS2107, EMC0322
Digital shielding	LRT2210	All digital equipment shall be shielded and have its AC or DC power line and communication line(s) filtered at the chassis.	SYS2106, SYS2107, EMC0327
Commercial equipment	LRT2220	Any Commercial off-the-shelf (COTS) equipment shall conform to IEC product family standards for immunity standards, or to the generic standard IEC 61000 – Part 6: Generic Standards if no product family standard is given. Additionally, the equipment shall have a CE mark or FCC compliance ID	SYS2016, EMC0401, EMC0402
Conducted Immunity, Testing	LRT2230	LRUs shall be designed and tested for immunity to conducted voltage and noise	SYS2106, EMC0411- 0412, EMC0421- 0424, EMC0431-0432, EMC0451-0452, EMC0461-0462
Electrostatic Discharge, Testing	LRT2240	LRUs shall be designed for and tested to meet ESD discharge requirements	SYS2106, EMC0471- 0473, ETR0501, ETR0505, ETR0506
Hi-Speed Design	LRT2250	RTG and RTD modules incorporating high speed digital logic shall be designed for low emission, incorporate best EMC practices, and be subject to rigorous review	SYS2016, ETR0714
ESD, Storage and Shipment	LRT2260	ESD sensitive components and modules shall use best practices for storage, shipment, and handling	SYS3904, ETR0503

Title: ngVLA LO Reference and Timing: Generation and Distribution Requirements	Owner: Shillue	Date: 2022-05-30
NRAO Doc. #: 020.35.00.00.00-0001-REQ)	Version: B

6.11 Reliability, Availability, and Maintainability

Parameter	Req.#	Value	Traceability
Reliability Analysis	LRT2300	A Reliability, Availability, Maintainability analysis shall be performed and documented as a memo by each designer at the LRU level to locate weak design points and determine whether the design meets the Maintenance and Reliability requirements.	ETR0904, SYS2402, SYS2801, SYS2802, SYS2805
Availability	LRT2305	The MTBF and MTTR for the RTG and central RTD parts are TBD. They should support a system budget to achieve 95% system availability	SYS2601, SYS2602
Mean Time Between Failure/Mean Time Between Maintenance	LRT2310	The RTD subsystem shall have a MTBM of TBD (Note: these values will be derived from a reliability analysis, driven by maintenance workload requirements) Here failures are considered in the same category as maintenance, any equipment status that would require a human intervention to address	SYS2610, SYS2605, AD11
Array Element MTTR	LRT2330	The RTD subsystem shall have a MTTR of TBD. (Note: these values will be derived from a reliability analysis, driven by maintenance workload requirements	SYS2611, SYS2605
Modularization	LRT2340	The system shall be modularized into Line Replaceable Units (LRUs) to facilitate site maintenance.	SYS2403
Spares Planning	LRT2350	Failure analysis shall be used in the planning of spares inventory. Factors considered shall include the projected availability for spares, the time required to repair the failure, and the viability of critical vendors.	SYS3204
Operations and Maintenance: Transfer of Deliverables	LRT2360	All procedures, test equipment, and test software shall be delivered to the Operations and Maintenance staff prior to full operations.	SYS3211
Preventive Maintenance	LRT2370	The parts of the RTG and RTD subsystems that have a direct impact on system availability should, as far as practically possible, allow for preventive maintenance without interrupting observations	SYS2603
LRU	LRT2380	LRUs should be interchangeable with no on-	SYS3232
Interchangeability Identify Failures	LRT2390	site calibration, tuning or alignment. All LRUs shall identify a failed state via physical	SYS3234
Physically		display (e.g., LED).	
Report Predicted Failures	LRT2400	All LRUs, where possible, shall report fault prediction sensor data via the M&C system.	SYS3236

Title: ngVLA LO Reference and Timing:	Owner: Shillue	Date : 2022-05-30
Generation and Distribution		
Requirements		
NRAO Doc. #: 020.35.00.00.00-0001-REC	2	Version: B

Parameter	Req. #	Value	Traceability
Failure Information Source	LRT2410	All LRUs shall report failure information in line with failure isolation as identified in a FMECA analysis.	SYS3237
Robustness Analysis	LRT2420	All ngVLA electronics designs shall be subject to a robustness analysis. Results of this analysis are a required part of the design review process. Robustness shall be demonstrated against environmental, power supply disturbance, vibration, monitor and control, inputs out-of-range.	ETR0905

6.12 Design Requirements

6.12.1 Printed Circuit Boards and Electrical Connections

Parameter	Req. #	Value	Traceability
Printed	LRT3200	For printed circuit boards incorporated into RTG or RTD	ETR0701,
Circuit		subsystem design:	ETR0712,
Boards-		(a) Design and manufacture shall meet the IPC	SYS2402,
Standards		Standard IPC-A-600K	SYS2803,
		Design and manufacture Shall meet RoHS 2 and 3	SYS2805
		standards	
Printed	LRT3210	Requirements for PCB materials, markings, and test and	ETR0704-
Circuit		maintainability shall be met by design	07011,
Board-			ETR0713,
Design			ETR0715-
			0717
Soldered	LRT3220	Soldered electrical connections shall use Class 2 of the	ETR1301
Electrical		IPC J-STD-001G Requirements for Soldered Electrical	
Connections		and Electronic Assemblies, per [AD09]	

Note: For commercial-off-the-shelf PCBs, these requirements are recommendations, with best effort to attempt to procure boards that meet as many of these requirements as possible.

6.12.2 Power and Ground

Parameter	Req. #	Value	Traceability
Power Supply	LRT3300	RTG or RTD shall achieve full performance with	AD21
noise and		power supply voltage stability and rms noise levels	
stability		specified in ICD	
DC Voltages	LRT3310	All RTD equipment in the ngVLA antenna station	ETR0821,
available		powered from DC voltages shall utilize voltages	ETR0803
		produced by the PSU modules, currently + 5 VDC,	
		+/- 7.5 VDC and +/- 17.5 VDC.	
PSU Voltage	LRT3320	Devices powered from the PSU modules shall	ETR0823
Tolerance		tolerate +/- 10% of the rated voltages.	

Title: ngVLA LO Reference and Timing:	Owner: Shillue	Date : 2022-05-30
Generation and Distribution		
Requirements		
NRAO Doc. #: 020.35.00.00.00-0001-REC	2	Version: B

Parameter	Req. #	Value	Traceability
LRU Physical	LRT3330	LRU chassis or housing shall be electrically connected	ETR0804
Ground		to the antenna or building structure using a proper	
		grounding wire. This wire can be a separate ground	
		connection or included in the connectorized harness	
		carrying power to the device.	
Power Supply	LRT3340	Structural/Chassis components and signal grounds	ETR0814
Returns		shall never be used as a power supply return path.	
Separate from			
Ground			
Overcurrent	LRT3350	All ngVLA Electronics systems shall implement	ETR0805
Protection		overcurrent protection on LRUs.	
Overcurrent	LRT3360	The ngVLA M&C system shall be able to monitor the	ETR0806
Protection		state of overcurrent protection devices in an LRU. An	
Device		exception is if the circuit protection device activated	
Monitoring		disables the LRUs M&C interface.	
Thermal	LRT3370	ngVLA LRUs shall be thermally protected.	ETR0807
Protection			
Thermal	LRT3380	The LRU shall be able to monitor the state of thermal	ETR0808
Protection		protection features. An exception is if the thermal	
Monitoring		protection activated disables the LRUs M&C	
		interface.	
Thermal	LRT3390	The designer shall analyze their designs and take steps	ETR0816
Analysis		to optimize thermal performance with a focus on	
		proper cooling, thermal stability and the elimination	
		of hot spots. The thermal design shall be published as	
		a report and included in design reviews.	
Power On	LRT3400	LRUs and power supplies shall contain externally	ETR0812
Indicators		visible LED power indicators with "steady blue"	
		indicating "nominal operation" and "blinking blue"	
		indicating "power is on but not meeting nominal	
		conditions." In RFI shielded enclosures, these may be	
		implemented with small LEDs or light pipes.	
Battery Use	LRT3410	Batteries shall not be used in the ngVLA system	ETR0817
		except in the case of the antenna –48 VDC power	
		system and a commercial UPS device for critical AC	
		line powered equipment.	
Transient	LRT3420	Transient Voltage Suppression devices shall be used	ETR0818
Protection of		on sensitive analog and digital I/O signals and power	
LRU I/O &		supplies entering or exiting a LRU. RF and other	
Power		signals that will be adversely affected by the inclusion	
Connections		of these devices are exempt from this requirement.	

Title: ngVLA LO Reference and Timing:	Owner: Shillue	Date: 2022-05-30
Generation and Distribution		
Requirements		
NRAO Doc. #: 020.35.00.00.00-0001-REC	2	Version: B

6.12.3 Electrical Wiring, Cables, Connectors

Parameter	Req. #	Value	Traceability
Wiring	LRT3500	Wiring documentation and labeling shall meet project	ETRIIOI,
Documentation and Labeling		standards [AD09]	ETRII02
DC voltage	LRT3510	DC voltages shall use a wiring color scheme as	ETR1103-
Wire Colors		specified in [AD09]	ETR1123,
			ETR 1 154,
			ETR1155
AC power	LRT3520	All AC wiring colors shall conform to US NEC	ETR1125
wiring colors		requirements.	
Wire and	LRT3530	Wire and cable protection, materials, ruggedness,	ETR1125-
Cable		installation, and insulation shall be implemented	ETR1132,
installation		according to [AD09]	ETR 1 156,
			ETR 1 157,
			ETR1189
Connector	LRT3540	Connector documentation and labeling shall meet	ETRII33,
Documentation and Labeling		project standards [AD09]	ETRII34
Connector	LRT3560	Connectors shall be selected for appropriate current	ETR1135-
Selection		rating, environmental rating, and expected number of mating cycles	ETRII37
Connectors for	LRT3570	If hot swapping is used, the design must be supported	ETR1139
Hot Swap		by the selection of an appropriate connector to	
		eliminate arcing, abnormal current flow, and	
		sequencing issues	
Connector	LRT3580	Connectors shall be chosen for ease of operational and	ETRII4I,
Design for Ease		maintenance use. This includes:	ETR 1 185,
of Operation		a. Use of keying to prevent incorrect mating	ETRII42
		b. Use of clear labeling and/or color coding	
		Use of standardized pinouts for cables/connectors used	
	I D TO FOO	in multiple places	ETDILO
Crimped	LRT3590	Crimped wire connections shall be preferred over	ETR 186,
Connectors		solder cup, and shall utilize best assembly practice per [AD09]	ETRI187
Connector	LRT3600	Connectors must meet project standards for reliable	ETR1197-
Туре,		performance by complying with retention and locking	ETR1212
Retention, and		standards. This is applicable to external electronic, RF,	
Locking		and fiber optic connectors, single and multi-pin.	
		Internal to LRUs, PCB board connections and other	
		critical interconnects must be designed for positive	
		retention. ETR1212 requires a documented analysis	
		for satisfying this requirement.	

Title: ngVLA LO Reference and Timing:	Owner: Shillue	Date: 2022-05-30
Generation and Distribution		
Requirements		
NRAO Doc. #: 020.35.00.00.00-0001-REC	2	Version: B

6.12.4 Materials, Lighting, and Mechanical

Parameter	Req. #	Value	Traceability
Metalwork	LRT3700	Metalwork used for modules, bins, and racks shall use	ETR1143-
		project standard recommendations for use of materials,	ETR I 147,
		plating and coating, surface preparation and painting.	ETRI188
Lighting	LRT3710	Status lighting shall be by means of long-life LED or OLED sources. BLUE shall be used solely to indicate presence of power supply. RED shall be used solely to indicate faults or alarms conditions. WHITE shall be used only for illumination. Other colors may be used at	ETRII48- ETRII53
		the designer's discretion for other conditions or status indication. Brightness shall be set to the minimum necessary for the desired function.	
Fasteners	LRT3720	All screws or any type of assembly hardware shall use	ETRII6I-
		metric standard, and materials, labeling, and design shall	ETR I 169,
		be according to [AD09].	ETRII7I,
			ETR 1 190,
			ETR1184
LRUs,	LRT3730	LRU shall be designed for ease of installation and	ETR 1170,
mechanical		removal, be free of rough edges, and follow project	ETR 1172,
		recommendations for assembly, installation, and	ETR1176-
		handling per [AD09]	ETR 1 178,
			ETRI183
LRU	LRT3740	LRUs shall be documented with engineering dimensions,	ETR1173-
documentation		units and tolerances per [AD09].	ETR1175
and dimensions			
differigions			

7 Safety

7.1 Safety Requirements

This section defines all design requirements necessary to support the Level-I Safety, Security and Cybersecurity requirements.

Parameter	Req. #	Value	Traceability
Safety	LRT4200	The RTG and RTD equipment shall comply with	SYS2700
Specification		ngVLA Safety Specifications [AD07]	
Security	LRT4210	The RTG and RTD equipment shall comply with	SYS2703
Specification		Security Plan and Requirements [AD08]	
Cybersecurity	LRT4220	The RTG and RTD shall be engineered and deployed	SYS2702
Specification		in accordance with current best practices in IT	
		Security, as defined by the NSF-funded Center for	
		Trustworthy Scientific Infrastructure and the AUI	
		Cyber Security Policy.	

Title: ngVLA LO Reference and Timing:	Owner: Shillue	Date : 2022-05-30
Generation and Distribution		
Requirements		
NRAO Doc. #: 020.35.00.00.00-0001-REC	2	Version: B

Parameter	Req. #	Value	Traceability
Hazard	LRT4230	The RTG and RTD subsystem shall have hazard	SYS2700
Analysis		analysis performed.	
LRU Weight	LRT4240	LRUs in the RTG and RTD subsystems shall include at	SYS2700,
Labels		least one clearly visible label indicating the weight of	SYS3202,
		the LRU in pounds. The label shall be compliant with	ETR0406
		applicable standards at the time of installation.	
Hot Connect &	LRT4250	In situations where, disconnecting cables or pulling of	SYS2700,
Disconnect		equipment with power on can cause damage, clearly	SYS3202,
Warning Labels		visible labels shall be applied to warn on this condition.	ETR0410
Electrical and	LRT4260	All electrical and optical safety labels shall be compliant	ETR1016,
Optical Label		with applicable standards at the time of installation.	SYS2700
Safety			
Standards			
Design for	LRT4270	All LRUs using Lasers or high intensity LEDs at levels	ETR1018,
Optical Safety		defined as dangerous in the ANSI Z136 series of	SYS2700
		standards (RD02) shall be designed to minimize or	
		prevent human exposure.	
Optical Safety	LRT4280	In all LRUs containing lasers, clearly visible labels in	ETR1019,
Labels		accordance with the IEC 60825-1:2014 Standard	SYS2700
		(RD03) shall be applied.	
Connectors for	LRT4290	If hot swapping is used, the design must be supported	ETR1138
Hot Swap		by the selection of an appropriate connector for	
		personnel and equipment safety	
No Exposed	LRT4300	Live signal or power pins in connectors shall not be	ETR1140
Live Terminals		exposed while connectors are unmated.	

8 Interface Requirements

Antenna Time and Frequency has interfaces with the several major subsystems as detailed in the subsections below.

8.1 Interface to PSU

[AD20] 020.10.40.05.00-0006: Interface Control Document Between: Antenna Electronics DC Power Supply (PSU) and Antenna Electronics Subsystem: section on LO Reference and Timing and Distribution (RTD) Subsystem (interface 0058)

This interface details the requirements for DC power needed to supply RTD equipment. Mechanical, thermal, and electronic interfaces are included.

A specific subset of these interface requirements (representing critical requirements) which will be fully defined in the ICD have been included in this document for tracking purposes and for completeness, as follows:

Title: ngVLA LO Reference and Timing: Generation and Distribution	Owner: Shillue	Date : 2022-05-30
Requirements		
NRAO Doc. #: 020.35.00.00.00-0001-REC)	Version: B

Power Supply noise and stability	LRT3300
DC Voltages available	LRT3310
PSU Voltage Tolerance	LRT3320
LRU Physical Ground	LRT3330
Power Supply Returns Separate	LRT3340
from Ground	

Table 3: RTD subsystem requirements tracked in ICD to PSU.

Additional interface requirements will be detailed in the ICD for connector and wire types and mechanical and thermal interfaces.

8.2 Interface to BMR

[AD21] 020.10.40.05.00-0040 Interface Control Document Between: Antenna Electronics Bins, Modules, and Racks (BMR) and Antenna Electronics Subsystem: section on LO Reference and Timing and Distribution (RTD) Subsystem (interface 0064)

This interface details the requirements for any bins, modules, or racks needed for RTD equipment. Mechanical, thermal, and electronic interfaces are included. Specific requirements which will be fully defined in the ICD have been included in this document for tracking purposes and for completeness, as shown in Table 4.

RFI suppressing housings	LRT1630
RTD subsystem size in pedestal	LRT5410
RTD subsystem weight in pedestal	LRT5420
RTD subsystem size in front end enclosure	LRT5430
RTD subsystem weight in front end enclosure	LRT5440

Table 4: RTD subsystem requirements tracked in ICD to BMR.

8.3 Interface to EEC

[AD22] 020.10.40.05.00-0069: Interface Control Document Between: LO Reference and Timing and Distribution (RTD) Subsystem and Antenna Electronics Environmental Control System (EEC) Subsystem

This interface details the requirements for environmental control of the RTD equipment. Mechanical, thermal (air or liquid heat transfer), and electronic interfaces are included. The interface requirement will include specific detailed requirement for the EEC subsystem for thermal control such that the environmental requirements detailed in Sections 5.7, 5.8, and 5.9 are met.

Precision condition temperature range	LRT320
Precision condition temperature stability	LRT330
Normal condition temperature range	LRT390
Normal condition temperature stability	LRT400

Table 5: RTD subsystem requirements tracked in ICD to EEC.

Title: ngVLA LO Reference and Timing: Generation and Distribution	Owner: Shillue	Date : 2022-05-30
Requirements		
NRAO Doc. #: 020.35.00.00.00-0001-REC)	Version: B

8.4 Interface to MCL/HIL

[AD23] 020.10.40.05.00-0077 Interface Control Document Between: Monitor and Control Hardware Interface Layer (HIL)/Monitor and Control Subsystem (MCL) (interface 0064) (incl MCL: interface 107) and LO Reference and Timing and Distribution (RTD) Subsystem

This interface details the requirements for interface between the RTD equipment hardware layer and the M&C hardware and software supervisory layers.

8.5 Interface to NSB

[AD24] 020.10.40.05.00-0095 Interface Control Document Between Computing/CSP subsystems: section on LO Reference and Timing Generation (RTG) and Distribution (RTD) Subsystems (interface 0099, 0100) and ngVLA Site Buildings (NSB) subsystem

Precision condition temperature range	LRT270
Precision condition temperature stability	LRT280
Precision condition air flow	LRT290
Normal condition temperature range	LRT340
Normal condition temperature stability	LRT350
Normal condition air flow	LRT360

Table 6: RTD/RTG subsystem requirements tracked in ICD to NSB.

8.6 Interface to MCL (RTG)

[AD25] 020.10.40.05.00-0106 (Interface 0081): Interface Control Document Between Monitor and Control System and LO Reference and Timing Generation (RTG)

This interface details the requirements for interface between the RTG equipment hardware layer and the M&C software supervisory layers.

Network Time to MCL/HIL LRT1330

Table 7: RTG subsystem requirements tracked in ICD between MCL/HIL and RTG.

8.7 Interface to FIB

[AD26] 020.10.40.05.00-0120: Interface Control Document Between Central Fiber Infrastructure (FIB) and LO Reference and Timing Distribution (RTD).

Precision condition temperature range	LRT300
Precision condition temperature stability	LRT310
Normal condition temperature range	LRT370
Normal condition temperature stability	LRT380

Table 8: RTD subsystem requirements tracked in ICD to FIB.

Title: ngVLA LO Reference and Timing: Generation and Distribution	Owner: Shillue	Date : 2022-05-30
Requirements		
NRAO Doc. #: 020.35.00.00.00-0001-REC)	Version: B

8.8 Interface to DBE

[AD27] 020.10.40.05.00-0122: Interface Control Document Between: Digital Backend Subsystem (DBE) and LO Reference and Timing – distribution (RTD)

The DBE utilizes an external time and frequency reference to generate its internal clock and data timestamps. Additionally, some data processing tasks are performed at specific time events. This interface defines the mechanical and electrical interface through which the DBE acquires the external time and frequency references from the RTD subsystem.

A specific subset of these interface requirements (representing critical requirements) which will be fully defined in the ICD have been included in this document for tracking purposes and for completeness, as follows:

DBE Frequency Input	LRT5350
DBE Frequency Input Accuracy	LRT5360
DBE Frequency Input Phase Noise	LRT5370
DBE Frequency Signal Type	LRT5380
DBE Frequency Signal Level	LRT5390
DBE Timing	LRT1380

Table 9: RTD subsystem requirements tracked in ICD to DBE.

Additional interface requirements will be detailed in the ICD for connector, cable and wire types and mechanical and thermal interfaces.

8.9 Interface to CSP

[AD28] 020.10.40.05.00-0123: Interface Control Document Between: Central Signal Processing (CSP) and LO Reference and Timing Generation (RTG)

The CSP at the central facility employ external time and frequency references that are internally distributed to every device that need them to generate their internal clock and data timestamps. Some data processing tasks are performed at specific time events. This interface defines the mechanical and electrical interface through which the CSP acquires the external time and frequency references from the LO Reference and Timing Generation subsystem.

A specific subset of these interface requirements (representing critical requirements) which will be fully defined in the ICD have been included in this document for tracking purposes and for completeness, as follows:

CSP Input Frequency	LRT5310
CSP Input Frequency Accuracy	LRT5320
CSP Frequency Signal Type	LRT5330
CSP Frequency Signal Level	LRT5340
CSP Timing	LRTI300

Table 10: RTD subsystem requirements tracked in ICD to CSP.

Additional interface requirements will be detailed in the ICD for connector, cable and wire types and mechanical and thermal interfaces.

Title: ngVLA LO Reference and Timing:	Owner: Shillue	Date : 2022-05-30
Generation and Distribution Requirements		
NRAO Doc. #: 020.35.00.00.00-0001-REC)	Version: B

8.10 Interface to ATF

[AD30] 020.10.40.05.00-0125: Interface Control Document Between: LO Reference and Timing – Distribution (RTD) and Antenna Time and Frequency (ATF)

This interface details the requirements for the Antenna Time and Frequency subsystem to receive time and frequency signal from the RTD subsystem, with specified accuracy, stability, level and signal types. Physical interfaces and full mechanical, thermal, and electronic interfaces are included.

A specific subset of these interface requirements (representing critical requirements) which will be fully defined in the ICD have been included in this document for tracking purposes and for completeness, as follows:

ATF Input Frequencies	LRT5260
ATF Input Frequency Accuracy	LRT5270
ATF Frequency Input Phase Noise	LRT5280
ATF Frequency Input Signal Type	LRT5290
ATF Frequency Input Tuning	LRT5250
Resolution	
Spurious Narrowband Tones	LRT1500
Spurious Emission impacting ATF	LRT1608
ATF Timing	LRT1370

Table II: RTD subsystem requirements tracked in ICD to ATF.

Additional interface requirements will be detailed in the ICD for connector types and mechanical and thermal interfaces.

8.11 Interface between RTG-RTD

[AD29] 020.10.40.05.00-0124: Interface Control Document Between: LO Reference and Timing – Distribution (RTD) and LO Reference and Timing – Generation (RTG)

This interface details the requirements for the Antenna Time and Frequency subsystem to receive time and frequency signal from the RTD subsystem, with specified accuracy, stability, level and signal types. Physical interfaces and full mechanical, thermal, and electronic interfaces are included. A specific subset of these interface requirements (representing critical requirements) which will be fully defined in the ICD have been included in this document for tracking purposes and for completeness, as follows:

RTD Input Frequencies from RTG	LRT5210
RTD Input Frequency Accuracy	LRT5220
from RTD	
RTD Frequency Input Stability from	LRT5230
RTD	
RTD Frequency Input Signal Type	LRT5240
from RTG	
Timing from RTG to RTD	LRT1350

Table 12 - RTD subsystem requirements tracked in ICD between RTG and RTD.

Additional interface requirements will be detailed in the ICD for connector types and mechanical and thermal interfaces.

Title: ngVLA LO Reference and Timing:	Owner: Shillue	Date : 2022-05-30
Generation and Distribution Requirements		
NRAO Doc. #: 020.35.00.00.00-0001-REC)	Version: B

9 Technical Metrics

Technical Metrics are used throughout the project and should be monitored throughout project design and development. These parameters strongly influence the eventual effectiveness of the facility and are useful high-level metrics for trade-off decisions. Technical Performance Measures are a category of technical metrics defined at the subsystem level.

9.1 Technical Performance Measures

The Technical Performance Measures are requirements that closely impact the overall performance of the ngVLA system and are therefore considered of higher importance. The following Technical Performance Measures are identified for optimization and monitoring throughout the design phase.

Technical Performance Measures	Req. #	Traceability LI Re#
LO Phase Noise	LRT1240	SYS5001, SYS1503, CAL0314
LO Phase Drift	LRT1250	SYS5001, SYS1504, SYS1505

Table 13: ngVLA Key Performance Parameters.

10 Verification

The design will be verified to meet the requirements by analysis (A), inspection (I), a demonstration (D), or a test (T), each defined below.

Verification by Analysis: The fulfillment of the specified performance shall be demonstrated by appropriate analysis (hand calculations, finite element analysis, thermal modeling, etc.), which will be checked by the ngVLA project office during the design phase.

Verification by Inspection: The compliance of the developed system is determined by a simple inspection (of the design documentation or deliverables) or measurement.

Verification by Demonstration: The compliance of the developed feature is determined by a demonstration.

Verification by Test: The compliance of the developed subsystem with the specified performance shall be demonstrated by an acceptance test.

Multiple verification methods are allowed over the course of the design phase, although the primary (final) verification method is identified below.

10.1 Environmental Testing

The following environmental test conditions are defined:

Precision Operating Conditions: temperature range and max rate of change (POC): corresponding to requirements ATF0320, ATF0330

- Critical requirements shall be tested at the minimum, median, and maximum temperature
- Stability testing shall be conducted under temperature rate of change defined for POC

Normal Operating Conditions: temperature range and max rate of change (NOC): corresponding to requirements ATF0390, ATF0400

- Critical requirements shall be tested at the minimum, median, and maximum temperature
- Stability testing shall be conducted under temperature rate of change defined for NOC

Title: ngVLA LO Reference and Timing:	Owner: Shillue	Date : 2022-05-30
Generation and Distribution		
Requirements		
NRAO Doc. #: 020.35.00.00.00-0001-REC	2	Version: B

Limit Operating Conditions (LOC):

Components exposed to Limit conditions during operations shall be tested for safe operation and for not incurring residual damage. Test profiles shall include:

- Start-up sequence from off to operational at minimum temperature (ATF0410) (at least 20 cycles).
- Extended operation (60 minutes) at maximum operating temperature (ATF0410)
- Maximum rate of change of temperature (up and down) between minimum and maximum values (at least 20 cycles) (ATF0420)

Transport conditions (Shock &Vibe)(SV):

- All LRUs that are transported shall be tested for not incurring residual damage at maximum transportation temperature over an extended period (at least 4 hours) (ATF0180)
- Prior to and after conducting SV testing, critical operational performance measures shall be tested (ATF0190, ATF0200)

10.2 Subsystem Verification Table

Req. #	Parameter/Requirement	Α		D	Т
LRT0160	Packaging for Transportation		*		
LRT0210	Packaging for Storage		*		
LRT0212	Storage temperature		*		
LRT0214	Storage humidity		*		
LRT0220	Altitude Range	*			
LRT1100	Number of Antennas	*			
LRTIII0	Antenna Stations Configuration	*			
LRT1120	Maximum Fiber Length	*			
LRT1130	Connected vs Independent Stations	*			
LRT1140	Number of Subarrays	*			
LRT1150	Subarray Creation and Modification	*			
LRT1200	LO Frequency				* POC, LOC, SV
LRT1205	Simultaneous LOs				*POC
LRT1210	LO Frequency Offsets				* NOC
LRT1220	Tuning resolution				* NOC
LRT1225	LO Switching Speed				* NOC
LRT1230	LO Amplitude				* POC, LOC, SV
LRT1235	LO Amplitude Stability				* POC
LRT1240	LO Phase Noise				* POC
LRT1250	LO Phase Drift				* POC
LRT1260	Digitizer Clock Phase Noise				* POC
LRT1270	Digitizer Clock Phase Drift				* POC
LRT1280	Return to Phase				* NOC
LRTI300	Timing Accuracy				* POC
LRT1355	Time Accuracy - Station				* POC
LRT1357	Antenna Timing				* POC
LRT1360	Subarray Timing				* POC
LRT1400	Standby Mode			*	
LRTI4I0	Automatic Initialization			*	
LRT1420	Operating Modes			*	
LRT1500	Spurious Narrowband Tones				* NOC

Title: ngVLA LO Reference and Timing:	Owner: Shillue	Date: 2022-05-30
Generation and Distribution		
Requirements		
NRAO Doc. #: 020.35.00.00.00-0001-REQ)	Version: B

Req. #	Parameter/Requirement	Α	I	D	Т
LRT1600	Spurious Signal Level Emission - Antenna Station				* NOC
LRT1602	Spurious Signal Level Emission - Central Building				* NOC
LRT1604	Spurious Signal Level Emission - Repeater Stations				* NOC
LRT1605	Spurious Emission impacting IRD				* NOC
LRT1608	Spurious Emission impacting LRT				* NOC
LRT1610	Emission Verification Frequencies		*		
LRT1620	Low Frequency Emission			*	
LRT1635	Self-Monitoring				* NOC,LOC, SV
LRT1640	LRU Alerts				* NOC,LOC, SV
LRT1650	High-Cadence Monitoring			*	
LRT1660	LRU Hot Swapping	*		*	
LRT1670	Remote Updates			*	
LRT1680	Automatic Configuration on Restart			*	
LRT1690	Front End Engineering Console		*		
LRT1700	M&C Commanded Reset for DC Powered Devices				* NOC
LRT1710	M&C Commanded Reset for AC Powered Devices				* NOC
LRT1800	Design Life	*			
LRT1810	Lifecycle Optimization	*			
LRT1820	Parts Selection and Procurement Criteria		*		
LRT1830	Packaging Supply		*		
LRT1840	Quality Control of Deliverables		*		
LRT1850	Test Fixtures		*		
LRT1860	Testing of Software and Firmware		*		
LRT1870	AIV Software Tools		*		
LRT1880	Incremental Delivery to Operations		*		
LRT1900	Serial Numbers		*		
LRT1910	Version Control for Software and Firmware		*		
LRT1920	Configuration Retrieval			*	
LRT1930	Physical Tracking		*		
LRT1940	Remote Identification			*	
LRT1950	Documentation		*		
LRT2200	Analog shielding	*	*		
LRT2210	Digital shielding	*	*		
LRT2220	Commercial equipment		*		
LRT2230	Conducted Immunity, Testing				* NOC
LRT2240	Electrostatic Discharge, Testing				* NOC
LRT2250	Hi-Speed Design	*			
LRT2260	ESD, Storage and Shipment		*		
LRT2300	Reliability Analysis	*			

Title: ngVLA LO Reference and Timing:	Owner: Shillue	Date: 2022-05-30
Generation and Distribution		
Requirements		
NRAO Doc. #: 020.35.00.00.00-0001-REC)	Version: B

Req.#	Parameter/Requirement	Α	ı	D	Т
LRT2310	Mean Time Between Failures	*			
LRT2320	Mean Time between Maintenance	*			
LRT2330	Array Element MTTR	*			
LRT2340	Modularization		*		
LRT2350	Spares Planning	*			
LRT2360	Transfer of Deliverables		*		
LRT2370	Automated Failure Reporting			*	
LRT2380	LRU Interchangeability		*		
LRT2390	Identify Failures Physically			*	
LRT2400	Report Predicted Failures			*	
LRT2410	Failure Information Source		*		
LRT2420	Robustness Analysis	*			
LRT3200	Printed Circuit Boards- Standards		*		
LRT3210	Printed Circuit Board-Design		*		
LRT3220	Soldered Electrical Connections		*		
LRT3300	LRU Power Input		*		
LRT3310	LRU Physical Ground		*		
LRT3320	Power Supply Returns Separate from		*		
LK 13320	Ground		•		
LRT3330	DC Voltages available		*		
	PSU Voltage Tolerance: Test Key				
LRT3340	Performance Parameters over full				* NOC
	range of power supply voltages				
LRT3350	Overcurrent Protection		*		
LRT3360	Overcurrent Protection Device			*	
	Monitoring				
LRT3370	Thermal Protection		*		
LRT3380	Thermal Protection Monitoring			*	
LRT3390	Thermal Analysis	*			
LRT3400	Power On Indicators			*	
LRT3410	Battery Use		*		
LRT3420	Transient Protection		*		
LRT3500	Wiring Documentation and Labeling		*		
LRT3510	DC voltage Wire Colors		*		
LRT3520	AC power wiring colors		*		
LRT3530	Wire and Cable installation		*		
LRT3540	Connector Documentation and Labeling		*		
LRT3560	Connector Selection		*		
LRT3570	Connectors for Hot Swap		*		
LRT3580	Connector Design for Ease of		*		
LBTSCOO	Operation Connectors		*		
LRT3590	Crimped Connectors Metalwork		*		
LRT3700			*		
LRT3710	Lighting		*		
LRT3720	Fasteners				

Title: ngVLA LO Reference and Timing: Generation and Distribution Requirements	Owner: Shillue	Date : 2022-05-30
NRAO Doc. #: 020.35.00.00.00-0001-REQ)	Version: B

Req.#	Parameter/Requirement	Α	ı	D	Т
LRT3730	LRUs, mechanical		*		
LRT3740	LRU documentation and dimensions		*		

Title: ngVLA LO Reference and Timing:	Owner: Shillue	Date : 2022-05-30
Generation and Distribution		
Requirements		
NRAO Doc. #: 020.35.00.00.00-0001-REC)	Version: B

II Appendix

II.I Abbreviations and Acronyms

Acronym	Description
AD	Applicable Document
AFD	Antenna Fiber Distribution subsystem
AIV	Acceptance, Integration, and Verification
ATF	Antenna Time and Frequency
BMR	Bins, Modules, and Racks subsystem
CDR	Critical Design Review
CI	Configuration Item
CoDR	Conceptual Design Review
COTS	Commercial-off-the-Shelf
CSP	Central Signal Processing
CSPT	CSP and Timing IPT
CSW	Computing and Software
DBE	Digital Backend
EEC	Antenna Electronics Environmental Control subsystem
EMC	Electromagnetic Compatibility
ESD	Electrostatic Discharge
FDR	Final Design Review
FED	Front End subsystem
FIB	Central Fiber Infrastructure
GHz	Gigahertz
HIL	Hardware Interface Layer
HIL	Hardware Interface Layer
HVAC	Heating, Ventilation, and Air Conditioning
I/F	Interface
ICD	Interface Control Document
IPT	Integrated Product Team
IRD	Integrated Receiver Digitizer
KPP	Key Performance Parameter
LBA	Long Baseline Array
LED	Light Emitting Diode
LO	Local Oscillator
LOC	Limit Operation Conditions
LRT	LO Reference and Timing
LRU	Line Replaceable Unit
M/C	Monitor and Control
MCL	Monitor and Control subsystem
MOE	Measure of Effectiveness
MOP	Measure of Performance
MTBF	Mean Time Between Failure
MTTM	Mean Time to Maintenance
MTTR	Mean Time to Repair

Title: ngVLA LO Reference and Timing:	Owner: Shillue	Date : 2022-05-30
Generation and Distribution		
Requirements		
NRAO Doc. #: 020.35.00.00.00-0001-REC	2	Version: B

Acronym	Description
ngVLA	Next Generation Very Large Array
NOC	Normal Operation Conditions
NRAO	National Radio Astronomy Observatory
NSB	ngVLA Site buildings
OLED	Organic Light Emitting Diode
PBS	Product Breakdown Structure
PCB	Printed Circuit Board
PDF	Portable Document Format
PDU	Power Distribution Unit
PE	Project Engineer
POC	Precision Operating Conditions
PSU	DC Power Supply subsystem
RD	Reference Document
RFI	Radio Frequency Interference
RTD	LO Reference and Timing - Distribution
RTD	Reference Timing and Distribution
RTG	Reference Timing Generation
TBC	To Be Confirmed
TBD	To Be Determined
TPM	Technical Performance Measure
WVR	Water Vapor Radiometer

020.35.00.00.00-0001-REQ-B-LO_REF_TIMING TECH REQS

Final Audit Report 2022-06-01

Created: 2022-05-31

By: Anne Lear (alear@nrao.edu)

Status: Signed

Transaction ID: CBJCHBCAABAALxF1EUkHa10nrB07ZBc-NAcshdYTnURI

"020.35.00.00.00-0001-REQ-B-LO_REF_TIMING_TECH_REQS " History

- Document created by Anne Lear (alear@nrao.edu) 2022-05-31 3:16:53 PM GMT- IP address: 75.161.220.198
- Document emailed to William Shillue (bshillue@nrao.edu) for signature 2022-05-31 3:17:56 PM GMT
- Email viewed by William Shillue (bshillue@nrao.edu)
 2022-06-01 7:39:28 AM GMT- IP address: 89.7.222.10
- Document e-signed by William Shillue (bshillue@nrao.edu)

 Signature Date: 2022-06-01 7:40:06 AM GMT Time Source: server- IP address: 89.7.222.10
- Document emailed to R. Selina (rselina@nrao.edu) for signature 2022-06-01 7:40:09 AM GMT
- Email viewed by R. Selina (rselina@nrao.edu)

 2022-06-01 12:07:48 PM GMT- IP address: 97.123.171.205
- Document e-signed by R. Selina (rselina@nrao.edu)

 Signature Date: 2022-06-01 12:09:26 PM GMT Time Source: server- IP address: 97.123.171.205
- Document emailed to Thomas Kusel (tkusel@nrao.edu) for signature 2022-06-01 12:09:28 PM GMT
- Email viewed by Thomas Kusel (tkusel@nrao.edu) 2022-06-01 12:53:17 PM GMT- IP address: 192.131.232.128
- Document e-signed by Thomas Kusel (tkusel@nrao.edu)

 Signature Date: 2022-06-01 12:54:22 PM GMT Time Source: server- IP address: 192.131.232.128

- Document emailed to Willem Esterhuyse (westerhu@nrao.edu) for signature 2022-06-01 12:54:25 PM GMT
- Email viewed by Willem Esterhuyse (westerhu@nrao.edu) 2022-06-01 1:32:51 PM GMT- IP address: 105.186.158.158
- Document e-signed by Willem Esterhuyse (westerhu@nrao.edu)

 Signature Date: 2022-06-01 1:33:27 PM GMT Time Source: server- IP address: 105.186.158.158
- Agreement completed. 2022-06-01 - 1:33:27 PM GMT