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that process, the standard theoretical assumptions introduce two fundamental
obstacles to that growth. The first is related to the migration of mm/cm-sized
particles; as these solids decouple from the gas disk they move inwards faster
than they can collide and grow. The second is that the timescales for assem-
bling “planetesimals” ( km scale bodies) is too long, given the migration and
destructive impacts of their precursors. The potential solution to both issues
is to locally concentrate the solids, halting their migration and slowing their
relative velocities to promote rapid growth to large sizes. The key factor needed
to make this happen is that the pressure profile of the gas disk is not smooth:
local pressure maxima, induced by abrupt variations in disk properties, dynam-
ical effects, or hydrodynamic instabilities, are predicted to effectively slow and
trap these particles to very high concentration levels. The only way to test this
hypothesis for aiding planetesimal formation is to directly characterize localized
concentrations of solid particles in disks. The ideal tracer is the 30-100 GHz
continuum, which strikes the best balance in sensitivity (emission still bright),
optical depth (low enough to reliably estimate densities), and angular resolution
(high enough to resolve fine-scale features at disk radii as small as 1 AU). A
modest survey could be used to understand the underlying physical mechanisms
that control the prevalence, forms, scales, amplitudes, spacings, and symmetry
of disk substructures and their presumably crucial roles in the planet formation
process.

Deep imaging of the radio continuum in two wide bands (bandwidths of 20-
30 GHz are sufficient) centered around 100 GHz (W) and 35 GHz (Ka) would be
required for both raw sensitivity and robust constraints on spatial variations of
the spectral index. Very high angular resolutions of 1.5 mas (corresponding to
0.2 AU for the nearest protoplanetary disks, with a typical distance of 140 pc)
are required to resolve the types of features that are theoretically predicted down
to a disk radius of 1 AU. Those resolutions require baseline lengths of 1000 km
in the Ka band. The benchmark spatial scale of the gas pressure peaks induced
dynamically or by hydrodynamic instabilities corresponds to the vertical scale
height, typically 10a FWHM 0.2 AU at a radius of 1 AU. So the resolution
driver is the ability to spatially resolve the typical substructures down to a disk
radius of 1 AU. Measurements over wide bandwidths at both ends of the 30-100
GHz range permit an estimate of the optical depth and spectral index of the
emission, crucial to understanding the strength of the pressure maxima respon-
sible for concentrating the particles. The lower frequency data are much more
likely to be optically thin, and thereby serve as fundamentally important tracers
of the solid densities in those concentrations. If high concentration levels can
be measured, we could rule on the likelihood that fast-acting instabilities (like
the streaming instability) are dominant players in the formation of planetesi-
mals. The conservative sensitivity goal would be to firmly detect (at 5-sigma)
a 10gas density variation expected in scenarios that might trap particles (e.g.,
weak vortices, dynamical perturbations from a very low-mass companion, etc.).
For the background emission, we consider a notional disk with a temperature
of 200 K and optical depths of 0.4 at 100 GHz and 0.1 at 30 GHz at a radius of
1 AU. The corresponding surface brightnesses are 0.04 and 1 microJy/beam at
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30 and 100 GHz, respectively. To detect a 10noise level of 0.0008 and 0.02 mi-
croJy/beam at 30 and 100 GHz, respectively. Those numbers are strikingly far
outside the notional ngVLA technical guidance. We feel obliged to present an
alternative that would still go a long way toward answering these same press-
ing questions, but for larger radii in the disk. A more feasible goal focuses
on the substructures that halt inward migration and concentrate particles to
high dust-to-gas ratios at these larger radii. This is perhaps more relevant to
connecting observations with the shortcomings of the theory, but less directly
relevant to terrestrial planet formation. A goal of resolving substructures with
scaleheight dimensions at a radius of 10 AU requires an angular resolution of
15 mas (2 AU). The same goal of detecting 10% variations (at 5-sigma) in the
surface brightness on these scales would require RMS noise levels of 0.02 and
0.7 microJy/beam at 30 and 100 GHz, respectively. This goal is compelling
because it would have good synergy with matching resolution observations us-
ing ALMA Band 6 (230 GHz). That would give considerably more leverage to
measurements of the spectral index in these particle concentrations (both due
to the large frequency lever and the potential to measure the temperature at
an optically thick wavelength). Note that all of these numbers scale with the
expected optical depth variation up to 100% levels, where the 100 GHz emission
would saturate around an optical depth of unity. In any cases, long-term moni-
toring observations would be of extraordinarily high value for any substructures
detected with a clear azimuthal asymmetry. The motions of such features com-
pared to their expected Keplerian orbital rates can help illuminate the natures
of the underlying source of the pressure maximum responsible for the particle
trap. A displacement of 1 beam would take 2 weeks or 1 year at 1 or 10 AU,
respectively, for the observing scenarios highlighted above.

The ngVLA is the only facility that can probe optically thin continuum
emission on these scales to constrain the mechanisms that create and contents
of particle traps. In principle it is also the facility with the most resolution at
long wavelengths, although perhaps will not be sensitive enough to exploit the
goals of this specific kind of program at those resolutions.

There is natural synergy with the long baselines of ALMA at higher fre-
quencies for identifying structures (at few AU scales) with higher contrasts, but
quantitative constraints on the solid surface densities and measurements at sub-
AU resolution are not possible with that facility (of course, we’ll leave it up to
the ngVLA team to decide if they are possible in this case). No other facility in
the long-term timeframe will be able to probe small-scale disk density structures
at sufficiently high angular resolution to compete with an ngVLA optimized for
this use case.

12.9 Particle Evolution at the H2O Snowline

Jonathan P. Williams, Paola Pinilla, & Sean M. Andrews
Water is perhaps the most important astrobiological molecule. The pileup

of particles at the water snowline is potentially a critical trigger for planet
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formation. Measuring other molecules that are also released provides a window
into icy planetesimal composition.

The water snowline in an accreting protoplanetary disk around a sun-like
star is at 5-10 au. We therefore require high angular resolution, ¡ 50mas, but
also need to map well beyond the snowline so require a maximum recoverable
scale ¿ 500mas. To meet the combination of resolution and low dust optical
depth suggests the ideal wavelengths for this experiment is at 30 GHz and we
would measure the spectral index across the 20 GHz bandwidth. For a fiducial
disk, the emission is predicted to be strong and the sensitivity requirements are
not stringent: 5 µJy/beam will suffice (for a distance of 100 pc).

To search for and locate the 23 GHz inversion transition from NH3 released at
the snowline is best carried out through spectro-astrometry rather than direct
mapping. This requires a high spectral resolution, 0.2 km/s, similar to the
thermal broadening. The predicted line flux is 150 µJy per 0.2” beam per
channel. That is a challenging aspect of the program, but the payoff is high.

Only ngVLA provides the required very high resolution imaging at millimeter-
centimeter wavelengths to study the dust properties across the H2O snowline.
ALMA can measure the spectral index from 1.3mm to 3mm at comparable an-
gular scales in long integrations but the dust emission can become optically
thick at these wavelengths, which prevents the grain properties from being de-
termined.

The emission from trace molecules, such as NH3, that are released as the ice
evaporates will be faint and detection requires a large collecting area. ALMA
may be able to do complementary work of other molecules that are mixed with
the water ice such as CO.

These observations can inform planet formation models at orbital radii of a
few au, where there is already much information on exoplanet demographics. It
will complement direct imaging studies of such planets with ELT and WFIRST.
Moving forward, there are no planned facilities that will be able to supersede
these observations.
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Chapter 15

Pulsars in the Galactic
Center and Beyond

15.1 Overview

Pulsars in the Galactic Center represent clocks moving in the space-time poten-
tial of a supermassive black hole, which would enable qualitatively new tests of
theories of gravity. More generally, pulsars offer the opportunity to constrain
the history of star formation, stellar dynamics, stellar evolution, and the magne-
toionic medium in the Galactic Center. The high stellar densities in the Galactic
Center region likely result in three-body interactions producing compact object
binaries more extreme than those found in globular clusters, enabling hitherto
impossible studies of General Relativity in a variety of sources. More gener-
ally, the ngVLA can make fundamental contributions to studies of gravitational
waves and other tests of theories of gravity.

15.2 The Galactic Center

Authors: Bower, Lazio, Chatterjee, Wharton, Cordes, Ransom, Demorest, . . .

Laura Chomiuk says: this is currently also under Galaxy Ecosystems (with
suggested author Mark Norris). I would argue it fits in better here, and it
doesn’t need to be in two places.

15.3 Gravitational Waves

Authors: Chatterjee, Lazio, Ransom, Demorest, Cordes, . . .
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15.4 Magnetars and Neutron Star Astrophysics

Candidate author: TBD. Alexander van der Horst?



Chapter 16

The Formation and
Evolution of Stellar and
Supermassive Black Holes
in the Era of
Multi-Messenger
Astronomy

16.1 Overview

While black holes are now clearly demonstrated to exist on practically all mass
scales, the astrophysics of how these objects form and grow remains a mystery.
LIGO is now detecting black holes that are substantially more massive than
previously known stellar mass black holes, and observing black hole-black hole
mergers—although we do not know how black hole binaries form. While super-
massive black holes (SMBHs) are thought to be widespread in galaxy centers,
we do not understand how their growth was seeded or how (and how often)
these extreme objects merge. The ngVLA, with its high sensitivity and high
resolution, can address all of these outstanding questions.

16.2 Hunting for Black Hole Binaries in the Milky
Way and Local Universe

XRBs in the Galaxy, in globular clusters, and local galaxies.
Candidate lead author: T. Maccarone with L. Chomiuk
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16.3 Accretion and Jets in Local Compact Ob-
jects

Where is our niche here, relative to SKA? Michael has run imaging simulations
of jets and maybe even accretion disks

Candidate lead author: D. Coppejans with help from G. Sivakoff, S. Heinz,
M. Rupen

16.4 Black Hole Growth and Feedback

Candidate lead author: K. Nyland – maybe A. Kapińska can help a bit, too?

16.4.1 Intermediate-Mass Black Holes in Globular Clus-
ters

Authors: Joan Wrobel (This was imported over from Galaxy ecosystems)

16.5 Precision Black Hole Masses

Candidate lead author: J. Braatz

16.6 Supermassive Black Hole Seeds

Can ngVLA address early SMBHs?

Candidate lead author: E. Gallo with help from A. Reines and R. Plotkin

16.7 Tidal Disruption Events

Candidate lead author: ?? Sjoert van Velzen??

16.8 Supermassive Black Hole Pairs and Bina-
ries

How the ngVLA can find pairs and how ngVLA could find EM counterparts to
LISA sources.

Candidate lead authors: S. Burke-Spolaor, V. Ravi, J. Schnittman – also
willing to help, T. Bogdanovic, L. Blecha
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16.9 Black Hole/Neutron Star Mergers as traced
by Gravitational Waves

Hot button issue: Joe Lazio should decide (possibilities include: N. Lloyd-
Ronning, Alessandra Corsi, Wen-Fai Fong, Kate Alexander, Gregg Hallinan,
Brian Metzger)

16.10 Supernovae and Long Gamma-Ray Bursts

i.e. engine-driven supernovae, which fits in here because the engine may be a
black hole (or magnetar)

Candidate authors: R. Margutti, A. Corsi –Laura Chomiuk think this could
go under the black holes chapter- moving it there.
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Chapter 17

Cosmology

17.1 Overview

In this chapter, we consider additional topics to which the ngVLA could make
substantial contributions but which do not fit into the high-level themes.

Laura Chomiuk proposes turning this into a cosmology chapter and then
dividing the other science between Galaxy Ecosystems and Black Holes.

17.2 Megamaser Cosmology

Candidate lead author: J. Braatz (or in BH section?)

17.3 Gravitational Lensing

Candidate lead author: TBD

17.4 Real-Time Cosmology

Candidate lead author: maybe A. Truebenbach and J. Darling

17.5 Variations of Fundamental Constants

Candidate lead author: N. Kanekar?

17.6 Cosmology

Candidate lead author: Philip Bull
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17.7 Intensity Mapping

Candidate lead author: Garrett “Keato” Keating


