

ngVLA Antenna Time and Frequency Technical Requirements

020.30.35.00.00-0004 REQ Status: **RELEASED**

PREPARED BY	ORGANIZATION	DATE
B. Shillue, J. Muehlberg	Central Development Laboratory, NRAO	2024-07-10

APPROVALS	ORGANIZATION	SIGNATURES
B. Shillue, Central Electronics IPT	ngVLA, NRAO	<u>B. Shillue</u> B. Shillue (Aug 19, 2024 10:25 EDT)
P. Kotzé, Systems Engineer	ngVLA, NRAO	Pieter Kotzé Pieter Kotzé (Aug 19, 2024 12:55 MDT)
R. Selina, Project Engineer	ngVLA, NRAO	Rob Selina (Aug 22, 2024 09:00 MDT)
W. Esterhuyse, Project Manager	ngVLA, NRAO	NIL AV

RELEASED BY	ORGANIZATION	SIGNATURE
W. Esterhuyse, Project Manager	ngVLA, NRAO	NIL AV

Change Record

Version	Date	Author	Affected Section(s)	Reason
I	2021-10-27	B. Shillue	All	Initial Draft
2	2022-03-25	B. Shillue	All	Incorporated comments from formal internal review.
3	2022-03-28	J. Muehlberg	All	Review and revisions.
А	2022-04-01	A. Lear	All	Formatting, minor copy edits. Prepared PDF for signatures and release.
A.1	2024-01-23	B. Shillue	many	Expanded Section 3.4, Added Requirements ATF1208, ATF1215, ATF1290. Other minor updates throughout
A.2	2024-02-23	B. Shillue	Many	Major revisions to 7.3, 7.5, 9 Minor revisions throughout
В	2024-02-29	M. Archuleta	All	Minor formatting and edits; prepared for release.
С	2024-07-10	B. Shillue		ATF1215, ATF0210, ATF4210, ATF4220 clarified.

Table of Contents

	Introduction	5
1.1	Purpose	5
1.2	Scope	5
2	Related Documents and Drawings	. 6
2.1	Applicable Documents	
2.2	Applicable Interface Control Documents	6
2.3	Reference Documents	
3	Overview of Subsystem Requirements	. 8
3.1	Document Outline	
3.2	Subsystem General Description	8
3.3	Subsystem Boundary and External Interfaces	
3.4	Key Requirements Summary	
4	Requirements Management	4
4.1	Requirements Definitions	
4.2	Requirements Flow Down	14
4.3	Verb Convention	15
5	Assumptions	15
6	Environmental Conditions	16
6.1	Survival Conditions	16
6.2	Transportation Conditions	16
6.3	Storage Conditions	17
6.4	Site Elevation	
6.5	Environmental Protection Requirements	
6.5.I	Seismic	
6.5.2	Lightning, Dust, Fauna, Rain/Water Infiltration and Corrosion Protection	
6.6	Precision Operating Conditions (POC)	
6.7	Normal Operating Conditions (NOC)	
6.8	Limits to Operating Conditions (LOC)	
7	Subsystem Requirements	
7.1	Size and Weight	
7.2	Frequency	
7.3	Amplitude	
7.4	Phase	
7.4.1 7.5	Phase Noise and Phase Drift Performance Budget	
7.5 7.6	Clock and Timing of Commercial Digitizer	
7.0 7.7	Modes	
7.7 7.8	Spurious/RFI	
7.8.1	Signal Path Spurious	
7.8.2	Spurious RFI Emission	
7.9	Monitor and Control	
7.10	Lifecycle	
7.11	Configuration	
7.12	EMC/Immunity	

Title : ngVLA Antenna Time and Frequency Technical Requirements	Owner: Shillue	Date : 2024-07-10
NRAO Doc. # : 020.30.35.00.00-0004 REQ	2	Version: C

7.13 Reliability, Availability, and Maintainability	34
7.14 Design Requirements	35
7.14.1 Printed Circuit Boards and Electrical Connections	35
7.14.2 Power and Ground	35
7.14.3 Electrical Wiring, Cables, Connectors	37
7.14.4 Materials, Lighting, and Mechanical	
8 Safety	
8.1 Safety Requirements	
9 Interface Requirements	
9.1 Interface to IRD	
9.2 Interface to PSU	
9.3 Interface to WVR	
9.4 Interface to BMR	
9.5 Interface to AFD	
9.6 Interface to EEC	
9.7 Interface to HIL	
9.8 Interface to RTD	
9.9 Interface to DBE	
10 Technical Metrics	
10.1 Technical Performance Measures	43
II Verification	44
II.I Environmental Testing	
11.2 Subsystem Verification Table	
12 Appendix	
12.1 Abbreviations and Acronyms	

I Introduction

I.I Purpose

This document presents the complete set of Level 2 subsystem requirements that should guide the design and development of the Antenna Time and Frequency (ATF) subsystem. Requirements described in this document are derived from applicable ngVLA System Requirements and System-Level Specification documents as listed in the Applicable Documents table. The overall requirements hierarchy and management strategy are outlined in [AD01] and [AD02].

The content of these requirements is at the subsystem level, conforming to the system architecture [AD06], but aims to be implementation agnostic within the subsystem boundaries. Some assumptions about the subsystem may be given, but only to the degree necessary to unambiguously define the subsystem requirements.

I.2 Scope

The scope of this document is the Antenna Time and Frequency (ATF) subsystem, as delivered for ngVLA integration. This includes the following:

- Assumptions upon which the requirements are based
- Definition of environmental requirements to be used as applicable conditions in the definition of the requirements
- A complete set of requirements for the subsystem needed for the development, operation and maintenance of the subsystem, including interface requirements that are derived from the applicable list of ICDs.
- Nonfunctional requirements unique to this subsystem (e.g., safety, quality, reliability, maintainability).
- List of Interface Requirements (I/F) and link to Interface Control Documents necessary to integrate with other Systems and Subsystems.
- Numbering of all requirement and establishment of traceability to higher level requirements.
- Technical Performance Measures (TPMs) at the subsystem level, which support the Measures of Performance (MOPs) at the system level.
- Requirements specified for the complete lifecycle of the subsystem, including any requirements that are applicable for operations, maintenance, decommissioning, and disposal.

2 Related Documents and Drawings

2.1 Applicable Documents

The following documents apply to this Requirements Specification to the extent specified. In the event of a conflict between the documents referenced herein and the content of this Requirements Specification, the content of the highest-level specification (in the requirements flow-down) shall be considered the superseding requirement for design elaboration and verification.

Ref. No.	Document Title	Doc. No.
AD01	ngVLA Systems Engineering Management Plan	020.10.00.00.00-0001 PLA
AD02	ngVLA Requirements Management Plan	020.10.15.00.00-0001 PLA
AD03	ngVLA System Requirements	020.10.15.10.00-0003 REQ
AD04	LI System Environmental Specifications	020.10.15.10.00-0001 SPE
AD05	LI System EMI/RFI Requirements	020.10.15.10.00-0002 REQ
AD06	System-Level Architecture Model	020.10.20.00.00-0002
		DWG
AD07	LI Safety Specification	020.80.00.00.00-0001 REQ
AD08	LI Security Specification	020.80.00.00.00-0003 REQ
AD09	ngVLA System Electronics Specifications	020.10.15.10.00-0008 REQ
AD10	Calibration Requirements	020.22.00.00.00-0001 REQ
ADII	System Technical Budgets	020.10.25.00.00-0002 DSN

2.2 Applicable Interface Control Documents

Ref. No.	Document Title	Doc. No.
AD20	Interface Control Document Between: Antenna Electronics Integrated Receiver and Downconverters (IRD) <i>and</i> Antenna Time and Frequency (ATF)	020.10.40.05.00-0005
AD21	Interface Control Document Between: Antenna Electronics DC Power Supply (PSU) <i>and</i> Antenna Time and Frequency (ATF)	020.10.40.05.00-0059
AD22	Interface Control Document Between: Digital Backend (DBE) <i>and</i> Antenna Time and Frequency (ATF)	020.10.40.05.00-0152
AD23	Interface Control Document Between: Water Vapor Radiometer (WVR) <i>and</i> Antenna Time and Frequency (ATF)	020.10.40.05.00-0028
AD24	Interface Control Document Between Antenna Electronics: Bins, Modules, Racks (BMR) <i>and</i> Antenna Time and Frequency	020.10.40.05.00-0040
AD25	Interface Control Document Between Antenna Electronics: Antenna Fiber Distribution (AFD) and Antenna Time and Frequency (ATF)	020.10.40.05.00-0041
AD26	Interface Control Document Between Antenna Time and Frequency (ATF) <i>and</i> Antenna Electronics Environmental Control System (EEC)	020.10.40.05.00-0070

<i>Title</i> : ngVLA Antenna Time and Frequency Technical Requirements	Owner: Shillue	Date : 2024-07-10
NRAO Doc. #: 020.30.35.00.00-0004 REC	2	Version: C

Ref. No.	Document Title	Doc. No.
AD27	Interface Control Document Between: Antenna Electronics	020.10.40.05.00-0078
	Monitor and Control Hardware Interface Layer (HIL) and	
	Antenna Time and Frequency (ATF)	
AD28	Interface Control Document Between: LO Reference and	020.10.40.05.00-0125
	Timing – Distribution (RTD) and Antenna Time and	
	Frequency (ATF)	

2.3 Reference Documents

The following documents are referenced within this text or provide supporting context:

Ref. No.	Document Title	Doc. No.
RD01	Science Requirements	020.10.15.05.00-0001 REQ
RD02	ANSI Z136 Standards for Implementing a Safe Laser	ANSI Z136.1 through .9
	Program	_
RD03	Safety of Laser Products – Part I: Equipment Classification	IEC 60825-1:2014
	and Requirements	
RD04	R. Selina, B. Shillue, O. Ojeda, M. Schiller, "Timing	ngVLA Electronic Memo
	Requirements & Considerations"	#15, July 2023
RD05	M. Morgan "Downconversion and Digitization Methodology	ngVLA Electronic Memo
	for the ngVLA"	#I, Jan 2020
RD06	R. Selina, B. Shillue, O. Yeste, Ojeda, M. Schiller,	ngVLA Electronics Memo, in
	"Supporting Spectral Dynamic Range Requirements"	prep
RD07	Integrated Receivers and Digitizers: Technical	020.30.15.00.00-0003 REQ
	Requirements	
RD08	Integrated Receivers and Digitizers: Design Description	020.30.15.00.00-0004 DSN
RD09	JESD204C Standard	https://www.jedec.org/stan
		dards-
		documents/docs/jesd-204a
RD10	ngVLA Digitizer Trade Study	020.10.25.00.00-0007 REP
RDII	IRD design risk reduction	020.10.60.10.00-0003 ECR

Date: 2024-07-10

3 Overview of Subsystem Requirements

3.1 Document Outline

This document presents the technical requirements for the Antenna Time and Frequency subsystem. These parameters determine the overall performance of the subsystem and the functional requirements necessary to enable its operation and maintenance.

The Level 2 Subsystem Requirements, along with detailed explanatory notes, are found in Section 7. The notes contain elaborations regarding the meaning, intent, and scope of the requirements. These notes form an important part of the definition of the requirement and should guide the verification procedures.

In many cases, the notes contain an explanation or an analysis of how the numeric values of requirements were derived. Where numbers have a degree of ambiguity or are insufficiently substantiated, this is also documented in the notes. In this way, the trade-space available is apparent to scientists and engineers who will guide the evolution of the ngVLA concept.

In certain cases, parameters are simply noted with a TBD or TBC value. The goal in such cases is to identify parameters that will require definition in future releases of the Antenna Time and Frequency Subsystem Requirements as the associated technical issues are understood.

Section II identifies performance metrics that will be monitored throughout the conceptual design phase. These are metrics to assist in the trade-off analysis of various concepts, should tensions be identified between requirements.

3.2 Subsystem General Description

The Antenna Time and Frequency Subsystem compromises a set of modules that perform a function of hardware timekeeping: generation and routing of an electronic signal, pulse, or digital rising or falling edge from a common reference input to another module or subsystem. These can include for instance local oscillators or digital clocks.

3.3 Subsystem Boundary and External Interfaces

Figure I (on the next page) shows the Antenna Time and Frequency subsystem boundaries, in the context of other systems on the antenna. External systems are shown in boxes with their Configuration Item (CI) number, in accordance with the Product Breakdown Structure (PBS) generated from the system architecture model. The ICD document number corresponding to each interface is displayed above the interconnect, where it exists.

<i>Title</i> : ngVLA Antenna Time and Frequency Technical Requirements	Owner: Shillue	Date : 2024-07-10
NRAO Doc. #: 020.30.35.00.00-0004 REC	2	Version: C

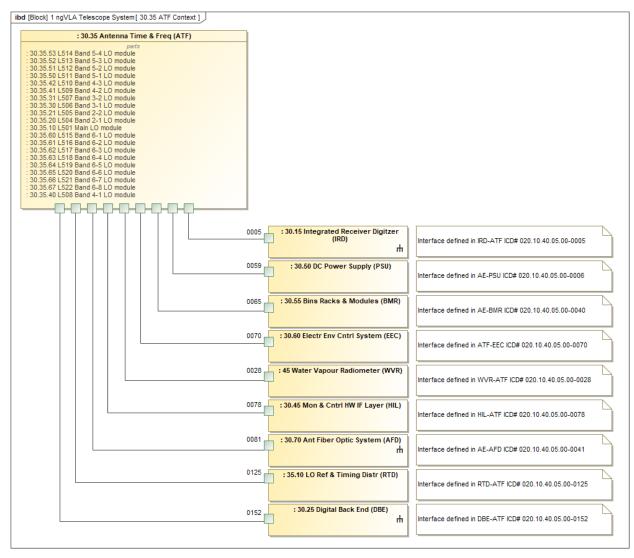


Figure I: Antenna Time and Frequency subsystem product breakdown, interfaces with other antenna subsystems.

3.4 Key Requirements Summary

The following table extracts a subset of the requirements from Section 7that are considered driving requirements for the ATF subsystem design.

Table	I - Key	Requirements	for	Antenna	Time	and	Frequency
-------	---------	--------------	-----	---------	------	-----	-----------

Parameter	Value	Requirement #		
LO Phase Noise	< 76 fsec integrated from 1 Hz to maximum IF frequency offset	ATFI240		
	Goal < 50 fsec			
This is the phase noise requirement directly flowed down from Systems Requirements. The phase noise is most important at the antenna local oscillator and digitizer clock. References provided by RTD subsystem and				

transferred to ATF subsystem shall be consistent with ultimately meeting the antenna LO phase noise requirement. In most cases the design of a distributed LO or clocking system will utilize phase lock loops or jitter cleaners in the distribution that make parts of the original central source phase noise spectrum irrelevant. So the interpretation of this requirement is:

(a) The RTD phase noise spectrum provided as input to ATF subsystem shall be consistent with ultimately meeting the overall system phase noise requirement at the antenna.

The ATF subsystem shall provide frequency sources and frequency references such that the total LO integrated phase noise requirement ATF1240 is met.

LO Phase Drift	< 59 fsec at 300 s for output of ATF including the RTD distribution	ATF1250
	< 42 fsec for ATF subsystem alone	
(linear term removed)		
	< 250 fsec absolute	

This requirement is applicable to the entire distributed LO system for ngVLA. Most significant sources of LO phase drift may be expected to be incurred in the RTD and ATF subsystems. In particular, in the RTD subsystem it is necessary to compensate for phase drift associated with the fiber link. The requirements noted above are applicable after any round trip compensation is applied.

These requirements come from SYS1504, 1505, 5001 in "ngVLA System Requirements," NRAO Doc# 020.10.15.10.00-0003-REQ:

SYS1504 The (relative) system phase drift residual shall not exceed 95 fsec rms per antenna over 300 seconds. Goal to meet this specification over a period of 1000 seconds.

SYS1505 The absolute phase drift per antenna over 300 seconds shall not exceed 4 psec. Goal to meet this specification over 1000 seconds.

SYS5001 takes the relative (95 fsec) and absolute (4000 fsec) drifts and allocates them to different subsystems. The Antenna Time and Frequency subsystem is allocated 1/5th of the total rms noise (i.e. $95/\sqrt{5} = 42$ fsec) for residual noise. The requirement ATF 1250 takes into account the need to verify the phase drift with and without the RTD frequency drift subsystem. For phase drift between two LO units measured without fiber optic distribution, the phase drift requirement is 42 fsec. Including the fiber optic distribution (and compensation) the requirement is 42 fsec * $\sqrt{2}$ = 59 fsec.

For absolute drift over 1000 seconds, $\tau = 250$ fsec is equivalent to 0.17 rad of phase scaled to the maximum LO frequency of 113.1 GHz.

Spurious Narrowband Tones	Spurious narrowband tones introduced in the LO spectrum may be expected to pass directly to the receive path. These tones shall contribute no more than -43 dB/MHz relative to the system noise level in the IF receive path. Derived requirement (see below) Within 3.5 GHz of carrier < -103 dBc Beyond 3.5 GHz from carrier < -48 dBc	ATFI500

• Assume that the LO power is + 10 dBm.

• Further assume that the receive signal path noise floor is low ~ -80 dBm/Mhz. The requirement sets the spurious at -43 dB relative to this level, or -123 dBm/MHz.

<i>Title</i> : ngVLA Antenna Time and Frequency Technical Requirements	Owner: Shillue	Date : 2024-07-10
NBAO Dec # 020 30 35 00 00 0004 BEO		Version: C

NRAO Doc. #: 020.30.35.00.00-0004 REQ

If the conversion efficiency of spurious inputs at the LO port was about the same as inputs at the RF port, then we would need to suppress those spurious inputs by 10 + 123 = 133 dBc. Direct port-to-port leakage of the tone is likely to be less significant than downconversion, and in any case the spurs we are currently concerned with lie well outside the IF baseband frequency range, and will be significantly attenuated by the baseband signal path if not downconverted first.

This downconverted LO path can be mitigated by the use of balanced mixers, anti-alias filtering, and the use of saturated amplification in the receiver LO path. These details may be different depending on the LO frequency and receiver or downconverter band.

For instance, the anti-aliasing filters will suppress signals more than ~3.5 GHz away from the primary LO by at least 55 dB (IRD062x). Second, the mixers will likely all be balanced, which should suppress LO noise and inputs by another 15 dB or so. Finally, LO buffer amps inside the IRD modules will likely be run in compression, which would tend to suppress weak signals which are present on top of the primary LO. We can conjecture an additional 15 dB (TBC) for this effect. So, with these effects we can relax our spurious LO tone suppression spec (for signal beyond 3.5 GHz) to 133-55-15-15 = -48 dBc. Or, for tones close (within 3.5 GHz) to the carrier -103 dBc.

LO Frequency Ranges	LO frequencies shall be provided to support downconversion (except instances of direct	ATFI200	
	conversion).		
These shall fall in or near to the range of sky frequencies required for ngVLA: 1.2–8 GHz, 8–50 GHz, and 70–			

116 GHz. Fixed or tunable LOs shall allow for continuous frequency coverage across these spans. Additionally, the design plan shall allow for simultaneously multiple LOs in a given receiver band so that the full available instantaneous downstream processing bandwidth can be achieved, and so that discontinuous portions of a band may be selected.

LO Frequency Table	Given the overall frequency ranges covered by ngVLA, the detailed design of the Front End receiver and downconverter spanning this range will determine the specific LO tunings for each downconverter (IRD module) and receiver band.	ATFI205
A tuning plan, or table, with required amplitudes and frequencies will be specified in the ICD between the ATF		

A tuning plan, or table, with required amplitudes and frequencies will be specified in the ICD between the A and the IRD. The current working version of this frequency table is shown below:

NRAO Doc. #: 020.30.35.00.00-0004 REQ

Version: C

		RF		LO	()
RF Band	Module		stop (GHz)		(GHz)
2	а	3.5	12.3	2	5.8
	b			4	11.6
3	а	12.3	20.5	5	14.5
	b			7	20.3
4	а	20.5	34	8	23.2
	b			10	29
	с			12	34.8
5	а	30.5	50.5	11	31.9
	b			13	37.7
	с			15	43.5
	d			17	49.3
6	а	70	116	25	72.5
	b			27	78.3
	с			29	84.1
	d			31	89.9
	е			33	95.7
	f			35	101.5
	g			37	107.3
	h			39	113.1

LO Frequency Offsets Nominal LO frequencies shall be capable of frequency offsetting on a per antenna basis.

The considerations around the implementation of this requirement are detailed in [RD06]. Each antenna station will incorporate a fixed frequency offset that is a multiple of a small fixed offset. The current design value of this fundamental offset is 15.68 kHz. Thus, an antenna will have its LO offset by an amount of m*15.68 kHz, where m is an index representing the antenna station and can take on values m = -131, -130, ..., -1, 0, 1, ... 130, 131 for an overall offset range of +/-131*15.68 kHz equals +/- 2.054 MHz. Similarly, the digitizer clock shall offset by the same amount.

Since bands 2–6 all have more than one LO, it is noted that the fixed offset attached to each LO in a particular band results in a different ratio between the offset and the LO frequency. This has implications for the LO design and is not a requirement but rather a system design choice subject to review and/or change.

Also, it is noted that the incremental assignment of offsets to stations applies only within a single science subarray. Thus, only when all antennas are in a single subarray would the full +/- 2.054 MHz tuning range be used. This, and the fact that subarrays can be re-assigned amongst sets of antenna stations, means that the fixed offset is tunable across m= -131, -130, ..., -1, 0, 1, ... 130, 131.

Digitizer/ Sampler	The Digitizer, or Sampler, implementation	ATFI208		
Frequency	depends on the Front End design. The ATF			
	shall supply a digitizer frequency, or a			
	reference frequency, as necessary, to			
	support the Front End implementation.			
Specific frequency (-ies) required for support of digitizers will be communicated to ATF via Antenna				
Electronics IRD group by means of ICD between ATF and IRD [AD20].				

Digitizer/ Offsets	Frequency	The reference clock supplied to the digitizer shall be capable of frequency offsetting on a	ATFI2I5
		per antenna basis.	

Digitizer/Sampler Frequency Offsets: not a strict requirement but per [SYS2015] a desirable feature. See especially the discussion in [RD06]. The implementation of offsets will be detailed in the ICD between ATF and IRD [AD20], as well as the ICD between ATF and DBE [AD22]. A potential implementation is as follows:

Each antenna station will incorporate a fixed frequency offset to the digitizer (or digitizer reference) that is a multiple of a small fixed offset. The current design value of this fundamental offset is 15.68 kHz. If the offset is to be applied to a reference to the digitizer that is fractionally related to the digitizer clock frequency, then the offset shall be applied as the same fraction multiplied by 15.68 kHz. Thus, an antenna will have its digitizer offset by an amount of m*15.68 kHz, where m is an index representing the antenna station and can take on values m= -131, -130,..., -1,0,1,...130,131 for an overall offset range of +/-131*15.68 kHz equals +/- 2.054 MHz.

Also, it is noted that the incremental assignment of offsets to stations applies only within a single science subarray. Thus, only when all antennas are in a single subarray would the full +/- 2.054 MHz tuning range be used. This, and the fact that subarrays can be re-assigned amongst sets of antenna stations, means that the fixed offset to applicable to a particular station shall be tunable to any of the values for m = -131, -130, ..., -1, 0, 1, ... 130, 131.

Timing to CSP-DBE	Timing accuracy to CSP-DBE shall be within	ATFI300	
_	2 nsec (goal of 1 nsec)		
	Relative to the central system clock on		
	short timescales and relative to the absolute		
	timing standard over I-day averaging		
Note: DBE subsystem is located at antenna pedestal. This requirement includes BTD correction for			

Note: DBE subsystem is located at antenna pedestal. This requirement includes RTD correction for fiber link delay, and accurate transmission of the corrected timing signal to the DBE subsystem at the antenna

Digitizer JESD Clocking	LO and Timing requirements for support of	ATFI290
	commercial digitizer chosen for	
	implementation in IRD modules shall	
	support the relevant JESD technical standard	

JESD204D is expected to be the standard of the eventual ngVLA digitizer. This standard is not published yet. However, clock and timing requirements are expected to be similar to the published JESD204C standard [RD09]

4 Requirements Management

4.1 Requirements Definitions

Consistent with the Requirements Management Plan [AD02], the following definitions of requirement "levels" are used in the ngVLA program. The requirements in this document are at the L2 subsystem level.

Requirement Level	Definition
LO	User requirements expressed in terms applicable to their needs or use cases (Science Requirements or Stakeholder Requirements)
LI	Requirements expressed in technical functional or performance terms, but still implementation agnostic (System Level Requirements)
L2	Requirements that define a specification for an element of the system, presuming a system architecture (Subsystem Requirements)

4.2 Requirements Flow Down

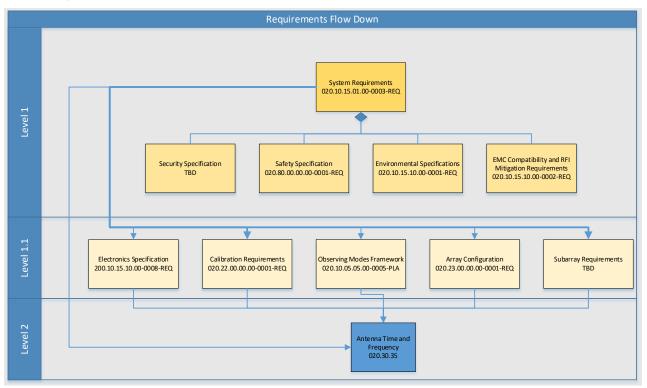


Figure 2 – Requirements flow-down to the Antenna Time and Frequency Subsystem Requirements.

Individual subsystem specifications (Level 2) flow from the Level I requirements, and may not always be directly attributable to a single system requirement. For example, phase drift specifications at the system level may be apportioned to multiple subsystems, or a subsystem spec may be in support of multiple higher-level requirements. Completeness of the Level 2 requirements is assessed at the requirements review of each subsystem.

While this is a top-down design process, the process is still iterative rather than a "waterfall" or linear process. The feasibility and cost of requirements implementation lead to trade-offs that feedback to higher-level requirements. The end goal is to build the most generally capable system that will support the Key Science Goals within the programmatic constraints of cost and schedule.

Maintaining enumerated and traceable science requirements, system requirements, and subsystem specifications ensures this trade-off process is complete and well understood by the project team. The effect of a change in a subsystem specification can be analyzed at the system level, and thereafter the impact on a specific scientific program can be ascertained.

4.3 Verb Convention

This document uses "shall" to denote a requirement. The verbs "should" and "must" denote desired but not strictly required parameters. "Will" denotes a future happening. Desired but not required features are noted as "desirable" or "goals."

5 Assumptions

The following assumptions are made in the definition of these subsystem requirements:

- Subsystem requirements apply to performance before any operational calibration corrections are applied unless explicitly stated otherwise.
- Hardware requirements apply to a properly functioning system under the precision operating environmental conditions unless explicitly stated otherwise.
- Hardware requirements assume that all system parts that would normally be in place during observations are working within their respective specifications (e.g., HVAC, RTP system) unless explicitly stated otherwise.
- Notwithstanding the desire that these requirements be implementation agnostic, a set of subsystems is assumed that interfaces with the ATF subsystem on the antenna. These are defined and an overview of the interface requirements included in Section 9.
- A receiver and water vapor radiometer are located on the elevated moving structure of the antenna
- A digital backend is located in the antenna pedestal

6 Environmental Conditions

The Antenna Time and Frequency subsystem components will be located in or on the Antenna Stations. The ATF equipment can be located either: inside the antenna pedestal, or on the elevated (and moving) structure of the antenna.

Local oscillators need to be provided to the receiver downconverters, close to the secondary focus of the antenna. Therefore, the applicable environmental conditions for a given subsystem, assembly, line-replaceable unit, or shop replaceable unit depends on its location and local conditions.

All ATF equipment shall be installed in environmentally controlled facilities or racks. As such, the normal operating conditions are defined by the applicable ICD:

- [AD24] 020.10.40.05.00-0040 (Interface 0065): Interface Control Document Between Antenna Electronics: Bins, Modules, Racks (BMR) and Antenna Time and Frequency
- [AD26] 020.10.40.05.00-0070: Interface Control Document Between Antenna Time and Frequency (ATF) and Antenna Electronics Environmental Control System (EEC)

6.1 Survival Conditions

The ATF subsystem when installed on the antenna shall survive without sustaining residual damage the following conditions:

Parameter	Req. #	Value	Traceability		
Temperature	ATF0110	–30 C ≤ T ≤ +50 C	ENV0342		
-		This is the range of ambient temperature to which			
		the modules may be exposed, thus internal			
		temperatures may rise above that			
Thermal	ATF0115	The ATF equipment will shutdown when	ATF0110		
Shutdown		temperatures exceeding a safe level have been			
		detected			

All ATF equipment is expected to be housed in a temperature-controlled environment. However, in case of power outage, the survival temperature range is applicable.

6.2 Transportation Conditions

Parameter	Req. #	Value	Traceability
Packaging for	ATF0160	All ATF LRUs shall be transported using ESD,	ETR0503
Transportation		thermal and vibration protective packaging in	ENV0381
		accordance with the System Environmental and	ENV0382
		Electronics Specifications	ENV0531
Solar Thermal	ATF0170	Exposed to full sun, 1200W/m ² (within transport	ENV0381
Load		cases)	
Transportation	ATF0180	$-30 \text{ C} \leq \text{T} \leq +60 \text{ C}$ (within transport cases)	ENV0382
Temperature			
General Vibration	ATF0190	Vibration on all three axes, for 60 minutes.	ENV0531
Mechanical Shock	ATF0200	LRUs packaged for shipping shall survive a	ENV0582
		mechanical shock level defined in [AD04]. In case of	
		shop replaceable units (SRU), these shall be	
		designed to withstand the drop requirement when	
		they are packaged for shipment within the LRU.	

The ATF subsystem is expected to consist of some products that are LRUs and some that are SRUs. The former, for instance, could be a module located in a rack in the antenna pedestal. The latter would be an LO SRU packaged into the Front End enclosure which is an LRU. The drop test is applicable to the LRU with testing conducted on the LRU in its shipping container.

6.3 Storage Conditions

Parameter	Req. #	Value	Traceability
Packaging for	ATF0210	All ATF LRUs shall be stored using ESD and	ETR0503
Storage		thermal protective packaging in accordance with	ENV0372
		the System Environmental and Electronics	ENV0373
		Specifications. Storage temperature range is 0 to	
		30 deg C with controlled humidity.	

6.4 Site Elevation

Parameter	Req. #	Value	Traceability
Altitude Range	ATF0220	All ATF elements shall be designed for operation and survival at altitudes ranging from sea level to 2500 m.	ENV0351, [AD26]

Equipment using air flow as a means of temperature regulation shall account for reduced air pressure at 2500 m.

6.5 Environmental Protection Requirements

6.5.1 Seismic

Parameter	Req. #	Value	Traceability
Seismic	ATF0230	The ATF subsystem shall be designed to withstand	ENV0521
Protection		a low-probability earthquake with up to 0.2g peak	
		acceleration in either the vertical or the horizontal	
		axis. Units shall not sustain residual damage under	
		these conditions while in the installed and	
		operational state.	

6.5.2	Lightning, Dust,	Fauna,	Rain/Water	Infiltration a	and Corrosio	n Protection
-------	------------------	--------	------------	----------------	--------------	--------------

Parameter	Req. #	Value	Traceability
Equipment	ATF0240	Protection against lightning, dust, fauna, solar	ENV0541,
Protection		radiation, rain/water infiltration and corrosion shall	ENV0542,
		be provided by the environmentally controlled	ENV0571,
		facilities or racks in which the ATF elements are	ENV0591
		installed, as defined by the applicable ICD [AD24],	
		[AD26]. No ATF element shall be installed outside	
		these facilities or racks.	

6.6 Precision Operating Conditions (POC)

The ATF subsystem shall have precision performance as defined in [AD04] under the following conditions:

Parameter	Req. #	Value	Traceability
Temperature	ATF0320	+17.5 C ≤ T ≤ +22.5 C	ENV0313,
POC			[AD22],
			[AD26]
Temperature	ATF0330	< 0.1 °C per hour	ENV0314,
Rate of Change			[AD22],
POC			[AD26]

[AD24] and [AD26] specify in further detail the temperature and humidity ranges which will surround the ATF subsystem LRUs and subassemblies during precision operating conditions. This temperature range shall be maintained while external temperatures are present in the range -15 C \leq T \leq +25 C, at night-time only, with temperature rate of change less than 1.8 C/hr, and during quieter wind and water vapor conditions specified in [AD04], Section 3.1.

6.7 Normal Operating Conditions (NOC)

The ATF subsystem shall have normal performance as defined in [AD04] under the following outside ambient conditions:

Parameter	Req. #	Value	Traceability
Temperature	ATF0390	+15 C ≤ T ≤ +25 C	ENV0323,
NOC			[AD22],
			[AD26]
Temperature	ATF0400	< 0.25 °C per hour	ENV0324,
Rate of Change			[AD22],
NOC			[AD26]

[4] and [AD26] specify in further detail the temperature and humidity ranges which will surround the ATF subsystem LRUs and subassemblies during normal operating conditions. This temperature range shall be maintained while external temperatures are present in the range -15 C \leq T \leq +35 C, in full sun, with temperature rate of change less than 3.6 C/hr, and with wind, and water vapor conditions as specified in [AD04], Section 3.2.

6.8 Limits to Operating Conditions (LOC)

The ATF subsystem shall be able to operate for extended periods without sustaining residual damage under the following outside ambient conditions:

Parameter	Req. #	Value	Traceability
Temperature	ATF0410	+5 C ≤ T ≤ +30 C	ENV0313,
LOC			[AD22],
			[AD26]
Temperature	ATF0420	< 0.5 °C per minute	ENV0314,
Rate of Change			[AD22],
LOC			[AD26]

Per [AD04], external temperature range -20 C \leq T \leq +45 C is applicable. [AD22] and [AD26] specify in further detail the temperature and humidity ranges which will surround the ATF subsystem LRUs and subassemblies during precision operating conditions.

7 Subsystem Requirements

7.1 Size and Weight

Parameter	Req. #	Value	Traceability
Size, ATF	ATFI100	ATF equipment shall be housed in NRAO designed	SYSI001,
Equipment in		RFI-shielded ARCs modules within the 1800mm	SYSIIOI,
Secondary Focus		wide X 1150mm deep X 600mm enclosure	SYS2403,
Front End		Allowable space within the enclosure will be	CAL0201,
Enclosure		detailed in [AD24]	CAL0205,
			CAL0206
Weight, ATF	ATFIII0	ATF equipment shall be housed in NRAO designed	SYS1001,
Equipment in		RFI-shielded ARCs modules within enclosure,	SYSI 101,
Secondary Focus		which itself shall have a maximum mass of 522kg	SYS2403,
Front End		Allocation of weight for ATF equipment within the	CAL0201,
Enclosure		enclosure will be detailed in [AD24]	CAL0205,
			CAL0206

The size and weight limitations of the front end enclosure flow down from the design choice of an offset dual reflector antenna geometry. The antenna design choice in turn flows down from SYS1001 and SYS1101 which set the antenna effective area to noise temperature ratio and the Field-of-view requirements. SYS2403 requires that equipment be modularized into line replaceable units. Once this design choice is in place, several calibration requirements conspire to limit the size and weight of the enclosure:

CAL0201 – blind pointing performance of the antenna. Since the enclosure is on the offset feed arm, the antenna pointing is sensitive to the weight

CAL0205 – Primary beam power pattern is influenced by accuracy of feed positioning, sensitive to enclosure size and weight

CAL0206, CAL0207- Calibration requirements for Band switching and antenna motion. Antennas dynamic response depends on the enclosure weight on the feed arm.

Parameter	Req. #	Value	Traceability
LO Frequency	ATFI200	LO frequencies shall be provided to support	SYS0801,
Ranges		downconversion (except instances of direct	SYS0803,
		conversion). These shall fall in or near to the range	SYS0804,
		of sky frequencies required for ngVLA: 1.2—8	SYS0805,
		GHz, 8-50 GHz, and 70-116 GHz. Fixed or tunable	SYS0806,
		LOs shall allow for continuous frequency coverage	SYS0903,
		across these spans. Additionally, the design plan	SYS0905
		shall allow for simultaneously multiple LOs in a	
		given receiver band so that the full available	
		instantaneous downstream processing bandwidth	
		can be achieved, and so that discontinuous	
		portions of a band may be selected.	
LO Frequency	ATFI205	Given the overall frequency ranges covered by	[AD20],
Table		ngVLA, the detailed design of the Front End	SYS0801,

7.2 Frequency

Parameter	Req. #	Value	Traceability
		receiver and downconverter spanning this range will determine the specific LO tunings for each downconverter (IRD module) and receiver band. A tuning plan, or table, with required amplitudes and frequencies will be specified in the ICD between the ATF and the IRD.	SYS0803, SYS0804, SYS0805, SYS0806, SYS0903, SYS0905
Digitizer/Sampler Frequency	ATF1208	The Digitizer, or Sampler, implementation depends on the Front End design. The ATF shall supply a digitizer frequency, or a reference frequency, as necessary, to support the Front End implementation. Specific frequency (-ies) required for support of digitizers will be communicated to ATF via Antenna Electronics IRD group by means of ICD between ATF and IRD [AD20]. Following completion of ICD this requirement will be updated and finalized.	[AD20], SYS0801- 0806, SYS0903-0906
LO Frequency Offsets	ATFI2I0	Nominal LO frequencies shall be capable of frequency offsetting on a per antenna basis.	SYS2105, SYS0603, SYS2217, [RD06]
Digitizer/Sampler Offsets	ATFI2I5	The Digitizer shall be capable of frequency offsetting on a per antenna basis.	SYS2105, SYS0603, SYS2217, [RD06]
Tuning Resolution	ATFI220	The LO shall be tunable if necessary to cover the required full frequency spans. If tuning is required, the resolution shall be 250 MHz or less.	SYS0906, SYS0907,
Switching Speed	ATFI225	Frequency switching between or within a band shall be accomplished in < 10 s. The switching time is defined as time to reach full performance.	SYS0908

The LO Frequency Table: arises from the design of the receiver and downconverters, and thus the specific frequencies and number of frequencies required to support ngVLA are detailed in the ICD between ATF and IRD [AD20].

A representation of the current version of the frequency table is shown in Table 2 (on the next page).

<i>Title</i> : ngVLA Antenna Time and Frequency Technical Requirements	Owner: Shillue	Date : 2024-07-10
NRAO Doc. #: 020.30.35.00.00-0004 REQ		Version: C

Table 2: LO Frequency Table

		RF		LO	
RF Band	Module	start (GHz)	stop (GHz)	harmonic	(GHz)
2	а	3.5	12.3	2	5.8
	b			4	11.6
3	а	12.3	20.5	5	14.5
	b			7	20.3
4	а	20.5	34	8	23.2
	b			10	29
	С			12	34.8
5	а	30.5	50.5	11	31.9
	b			13	37.7
	С			15	43.5
	d			17	49.3
6	а	70	116	25	72.5
	b			27	78.3
	С			29	84.1
	d			31	89.9
	е			33	95.7
	f			35	101.5
	g			37	107.3
	h			39	113.1

LO Frequency Offsets: The role of the per antenna small frequency offset is to provide a mechanism for image suppression and self-generated spurious that would otherwise be coherent antenna-to-antenna. This is discussed extensively in [RD06]. The implementation of offsets will be detailed in the ICD between ATF and IRD [AD20], as well as the ICD between ATF and DBE [AD22]. A potential implementation is as follows:

Each antenna station will incorporate a fixed frequency LO offset that is a multiple of a small fixed offset. The current design value of this fundamental offset is 15.68 kHz. Thus, an antenna will have its LO offset by an amount of m*15.68 kHz, where m is an index representing the antenna station and can take on values m = -131, -130,..., -1,0,1,...130,131 for an overall offset range of +/-131*15.68 kHz equals +/-2.054 MHz.

Since bands 2–6 all have more than one LO, it is noted that the fixed offset attached to each LO in a particular band results in a different ratio between the offset and the LO frequency. This has implications for the LO design and is not a requirement but rather a system design choice subject to review and/or change.

Also, it is noted that the incremental assignment of offsets to stations applies only within a single science subarray. Thus, only when all antennas are in a single subarray would the full +/- 2.054 MHz tuning range be used. This, and the fact that subarrays can be re-assigned amongst sets of antenna stations, means that the fixed offset to applicable to a particular station shall be tunable to any of the values for m = -131, -130, ..., -1, 0, 1, ... 130, 131.-

Digitizer/Sampler Frequency Offsets: not a strict requirement but per [SYS2015] a desirable feature. See especially the discussion in [RD06]. The implementation of offsets will be detailed in the ICD between ATF and IRD [AD20], as well as the ICD between ATF and DBE [AD22]. A potential implementation is as follows:

Each antenna station will incorporate a fixed frequency offset to the digitizer (or digitizer reference) that is a multiple of a small fixed offset. The current design value of this fundamental offset is 15.68 kHz. If the offset is to be applied to a reference to the digitizer that is fractionally related to the digitizer clock frequency, then the offset shall be applied as the same fraction multiplied by 15.68 kHz. Thus, an antenna will have its digitizer offset by an amount of m*15.68 kHz, where m is an index representing the antenna station and can take on values m= -131, -130,..., -1,0,1,...130,131 for an overall offset range of +/-131*15.68 kHz.

Also, it is noted that the incremental assignment of offsets to stations applies only within a single science subarray. Thus, only when all antennas are in a single subarray would the full +/- 2.054 MHz tuning range be used. This, and the fact that subarrays can be re-assigned amongst sets of antenna stations, means that the fixed offset to applicable to a particular station shall be tunable to any of the values for m = -131, -130,..., -1,0,1,...130,131.

Parameter	Req. #	Value	Traceability
LO Amplitude	ATFI230	Given the overall frequency ranges covered by	[AD20],
		ngVLA, the detailed design of the front end receiver	SYSIOII,
		and downconverter spanning this range will	SYS1012,
		determine the specific LO levels required needed	SYSI013,
		for each downconverter (IRD module) and receiver	SYS1033,
		band. A tuning plan, or table, with required	SYS1034,
		amplitudes and frequencies will be specified in the	SYS1035
		ICD between the ATF and the IRD.	
LO Amplitude	ATFI235	LO amplitude change shall not contribute to the	SYS1601
Stability		receive signal path amplitude change so as to cause	SYS4601
		fractional gain stability to exceed:	SYS4604
		> le-3 at 60 s (goal le-4)	SYS1603
		> 4e-3 at 200 s (1 MHz bandwidth)*	SYS4603
		> 8e-3 at 200 s (1 MHz bandwidth)**	SYS4902
		> Ie-2 for 4° change in elevation (8 GHz)***	
		> le-2 per deg K	
		*Precision Operating Conditions	
		(see Sec 6.6, [AD04])	
		**Normal Operating Conditions	
		(see Sec 6.7, [AD04])	
		****scaled with frequency	

7.3 Amplitude

LO Amplitude: Final requirements will be in the ICD between IRD and ATF [AD20]. A preliminary version of this ICD has the following placeholders, which are subject to change:

Band 2 LO Power	The Band 2 LO nominal power shall be +7 dBm (CW).
Band 3 LO Power	The Band 3 LO nominal power shall be +7 dBm (CW).

Band 4 LO Power	The Band 4 LO nominal power shall be +3 dBm (CW).
Band 5 LO Power	The Band 5 LO nominal power shall be +13 dBm (CW).
Band 6 LO Power	The Band 6 LO nominal power shall be +13 dBm (CW).

LO Amplitude Stability: The levels appearing in the table above refer to the maximum acceptable level for gain (or power) level change in linear units, of the *receive chain signal path*. The specific acceptable level for LO amplitude changes versus time, temperature, or tilt depend on the LO design and its interface with the integrated receiver modules. *This is a derived requirement that will be confirmed (TBC) following the ICD between ATF and IRD [AD20].*

- The sixty second accuracy of Ie-3 is equivalent to .004 dB.
- The sixty second goal accuracy of 1e-4 is equivalent to .0004 dB.
- The 200s accuracy of 4e-3 is equivalent to .017 dB

Assuming that the IRD buffer amplifiers are designed to operate in compression so that 90% of incident fluctuations are suppressed, then the LO amplitude stability requirement would be:

Local Oscillator Stability		Linear gain	dB
60 s	Required	le-2	0.04
60 s	Goal	le-3	0.004
200 s	Required, Precision Conditions	4e-2	0.17
200 s	Required, Normal Conditions	8e-2	0.36
Per deg K	Required	le-l	0.45
Per 4° change in elevation	Required (at 8 GHz), scaling with frequency	le-l	0.45

7.4 Phase

Parameter	Req. #	Value	Traceability
LO Phase Noise	ATFI240	< 76 fs integrated from 1 Hz to maximum IF	SYS5001,
		frequency offset	SYSI 503,
		Goal is < 50 fs	CAL0314
LO Phase Drift	ATF1250	< 59 fs at 300 s (linear term removed)	SYS5001,
		< 1500 fs (absolute)	SYS1504,
			SYS1505,
			CAL0314
Digitizer Clock	ATFI260	< 76 fs integrated from I Hz to maximum IF	SYS5001,
Phase Noise		frequency offset	SYSI 503,
		Goal < 50 fs	CAL0314
Digitizer Clock	ATFI270	< 59 fs at 300 s (linear term removed)	SYS5001,
Phase Drift		< 1500 fs (absolute)	SYS1504,
			SYS1505,
			CAL0314
Return to Phase	ATF1280	Any derived LO or timing signal shall return to	SYS0602
		phase upon change in frequency from F_1 to F_2 to F_1	

<i>Title</i> : ngVLA Antenna Time and Frequency Technical Requirements	Owner: Shillue	Date : 2024-07-10
NRAO Doc. #: 020.30.35.00.00-0004 REC	2	Version: C

These system level phase critical requirements must be fulfilled by elements of the Antenna Time and Frequency subsystem (ATF). The ATF is in turn relies upon receiving accurately phased reference signals from the RTD subsystem. The drift and noise stability that is required at the RTD-ATF interface will be carefully detailed in the ICD [AD28].

Note I: ATF1250 specifies phase drift performance of the main array out to maximum baseline length of 350 km. The requirement is stricter than the equivalent phase drift between two physically separated hydrogen masers. Consistent with SYS5001 and discussion in [AD03] the requirement beyond 350 km is relaxed to account for the need to have H-masers as independent frequency references at each site.

Note 2: ATF1240 specifies the rms phase noise integrated up to the maximum IF frequency. In practice, it is seldom the case for an oscillator to have significant phase noise contribution above ~ 10 or 20 MHz, whereas in the most recent design the IF frequency goes to 2.9 GHz. Therefore it is sufficient to measure only up to the maximum offset frequency at which non-negligible contribution to phase noise occurs, for the particular oscillator type used in the design.

Note 3: ATF1280 shall be verified by implementing a frequency switching test set, with repeated switch cycles frequency from F1 to F2 to F1 over a long period (one hour or more). The phase measurement at F2 is then thrown out, and the phase samples measured at F1 are kept. The linear drift may be removed from these samples and then the resulting concatenated phase time series shall meet the ATF1250 requirement of 42 fsec RMS averaged at 300 seconds.

7.4.1 Phase Noise and Phase Drift Performance Budget

For each of these requirements (ATF 1240, ATF1250, ATF1260, ATF1270, ATF1280) the design of the antenna time and frequency (ATF) subsystem contains the output LO or clock that defines the performance requirement. The RTD subsystem design must support the ATF requirements and design by supplying adequately clean and accurate references.

The overall system phase noise and drift requirements from [AD03] are shown below.

Parameter	System Req. #		
Allocation of Phase Noise & Drift	SYS5001		
Component	Noise	Drift Residual	Absolute Drift
component	(fsec, rms)	300 sec fsec, rms	300 sec psec
System	132	95	4.3
Sub-System Allocations:			
ANT	76	42	2
ATF (LO)	76	42	0.25
ATF (DTS Clock)	76	42	0.25
ATF (RTP)	0	42	0.25
RTD	0	42	1.25
Estimated System Total	132	94	4

Table 3 - Overall System Phase Noise and Phase Drift Allocations

- The 76 fsec from ATFI240 appears in the second row under sub-system allocations
- The 59 fsec drift residual from ATF1250 is the root sum of the 2nd and 5th row
- The 1500 fsec from ATF1240 absolute drift is the sum of the 2^{nd} and 5^{th} row
- The 76 fsec from ATFI260 appears in the third row under sub-system allocations
- The 59 fsec drift residual from ATF1270 is the root sum of the 3rd and 5th row

We also allocate a phase drift at the output of the RTD (i.e. the RTD/ATF interface). At this interface the antenna subsystem will perform cleanup phase lock loop and frequency multiplication. Nevertheless, the low frequency phase noise from the RTD output will be "copied" to the antenna system. Therefore, the relevant integration limits for verification of the RTD/ATF interface is in the low frequency regime, which we choose to be I Hz to I KHz (this can be revisited as the design matures).

Table 4 – Phase noise allocation breakdown for 1st LO

Phase Noise source	Frequency offset limits	Phase noise allocation rms	RSS contribution
RTD output integrated from 1 Hz to 1 kHz	I Hz to I kHz	44 fsec	33 %
Contribution from Cleanup loop 2.9 GHz oscillator	I Hz to 2.9 GHz	31 fsec	16.6 %
Output of Cleanup Loop Oscillator	I Hz to 2.9 GHz	54 fsec	50 %
Higher frequency multiplication and synthesis	I Hz to 2.9 GHz	53.7 fsec	50 %
LO Output	I Hz to 2.9 GHz	76 fsec	100 %

7.5 Clock and Timing of Commercial Digitizer

Parameter	Req. #	Value	Traceability
JEDEC Standard	ATF1290	LO and Timing requirements for support of	SYS0302,
Clock and Timing		commercial digitizer chosen for implementation in	SYS0745,
		IRD modules shall support the relevant JESD	SYS0903,
		technical standard	SYS2002,
			[AD20],
			[AD22],
			[RD07],
			[RD08]

JEDEC standard: JEDEC publishes a set of standards called JESD. JESD204, which specifically focuses on the electrical and mechanical specifications for high-speed serial interfaces used in data converters, particularly Analog-to-Digital Converters (ADCs) and Digital-to-Analog Converters (DACs). JESD204 standards define the communication protocols and physical layer requirements for transferring digital data

<i>Title</i> : ngVLA Antenna Time and Frequency Technical Requirements	Owner: Shillue	Date : 2024-07-10
NRAO Doc. #: 020.30.35.00.00-0004 REC	2	Version: C

between data converters and other components within a system, such as FPGAs, DSPs, or microcontrollers. The most recent update is JESD204C [RD09]. At present, ngVLA expects to implement a device with the forthcoming JESD204D standard [RD10, RD11]. Generally, commercial manufacturers of LO and timing devices concurrently develop devices to support the signal requirements of the ADC standards. With this requirement, LO Reference and Timing will implement the required circuitry to provide the ADC, or digitizer, with the correct reference clock and timing signals. Likewise, for the DBE which will receive the data stream and which will also require specialized clock and timing meeting JESD204D (or whatever standard is chosen).

7.6 Timing

Parameter	Req. #	Value	Traceability
Timing at RTD	ATFI300	Timing accuracy to RTD output shall be within 2	SYS2002,
output		nsec (goal of 1 nsec)	SYS2003,
		Relative to the central system clock on short	SYS0404,
		timescales and relative to the absolute timing	[RD04]
		standard over 1-day averaging	
		Note: DBE subsystem is located at antenna	
		pedestal. This requirement includes RTD	
		correction for fiber link delay, and accurate	
		transmission of the corrected timing signal to the	
		DBE subsystem at the antenna	
Time Accuracy –	ATF1355	The relative difference between local antenna time	SYS2002,
Antenna Station		and the system clock shall not exceed $\pm 5 \ \mu$ s.	SYS2003,
Functions		This requirement is for relative accuracy of	SYS0404,
		antenna tracking, switched power, and fringe	[RD04]
		search functions. (all antenna functions except	
		DBE-timestamping)	
Antenna Timing	ATF1357	The antenna clock domain shall be stable relative	SYS2002,
		to the antenna LO reference to within 2 ns.	SYS2003,
		This requirement supports synchronization of LO,	SYS0404,
		digitizer and antenna timing signal.	[RD04]
Timing to DBE	ATF1380	From the output of the RTD, 1 PPS timing	SYS2002,
		accuracy to digitizer and DBE using JESD protocols	SYS2003
		shall result in not more than I nsec residual timing	
		error	

System requirement for Temporal Accuracy (SYS2002): Data Product timestamps shall be referred to an absolute time standard (e.g., GPS or TAI) with an error of less than 10 ns (goal of 1 ns).

System requirement for Timestamp Corrections (SYS2003): Timestamps may be applied or corrected retroactively (i.e., it is not necessary for it to be known in real time.) Any timestamp corrections shall be made through a metadata table that is incorporated into the data model.

Taken together SYS2002 and SYS2003 imply the need for accurate central timing, and the need for – at least—an accurate model of the antenna timing.

The antenna timing is constrained by at least three functional needs:

- Antenna tracking: Timing accuracy <= 660 us
- Switched Power: Timing accuracy <=50 us
- Fringe search: Timing accuracy <=50 us

These three needs, inclusive of some design margin, lead to a requirement for the timing of the antenna system to not deviate from the system clock by more than about 5 μ s. i.e., the relative difference between local antenna time and the system clock **shall not exceed ±5 \mus**. This requirement shall be met by the hardware alone, before the application of time corrections (online or offline) derived from astronomical calibration. We note that this is within the capabilities of the IEEE 1588 Precision Time Protocol.

Additionally, there is a need for accurate timing by either model, measurement, or active correction to at least one reference antenna in any given subarray. The accuracy of this timing for support of data timestamping **shall be less than 2 ns**.

7.7 Modes

Parameter	Req. #	Value	Traceability
Standby Mode	ATFI400	A low power standby mode shall be available for all	SYS0010,
		ATF modules. Monitor and Control shall remain	SYSOOII,
		operational in this mode.	ETR0809,
			ETR0810
Automatic	ATFI4I0	ATF modules shall automatically boot into standby	SYS0011,
Initialization		mode on power-up, absent any command from	SYS3114,
		M&C.	ETR0811
Operating Modes	ATF1420	Any functional operating mode can be reached by	SYS0010
		command from Standby Mode.	

7.8 Spurious/RFI

7.8.1 Signal Path Spurious

Parameter	Req. #	Value	Traceability
Spurious	ATFI500	Spurious narrowband tones introduced in the LO	[AD20],
Narrowband		spectrum may be expected to pass directly to the	SYS2104
Tones		receive path. These tones shall contribute no more	
		than -43 dB/MHz relative to the system noise level	
		in the IF receive path.	
		Derived requirement (see below)	
		Within 3.5 GHz of carrier < –103 dBc	
		Beyond 3.5 GHz from carrier < -48 dBc	
		TBC	

Note that the specific acceptable level for spurious with respect to the LO power level LO will be detailed in the ICD between ATF and IRD [AD20].

Derivation of Spurious Requirement:

• Assume that the LO power is + 10 dBm.

• Further assume that the receive signal path noise floor is low ~ -80 dBm/Mhz. The requirement sets the spurious at -43 dB relative to this level, or -123 dBm/MHz.

If the conversion efficiency of spurious inputs at the LO port was about the same as inputs at the RF port, then we would need to suppress those spurious inputs by 10 + 123 = 133 dBc. Direct port-to-port leakage of the tone is likely to be less significant than downconversion, and in any case the spurs we are currently concerned with lie well outside the IF baseband frequency range, and will be significantly attenuated by the baseband signal path if not downconverted first.

This downconverted LO path can be mitigated by the use of balanced mixers, anti-alias filtering, and the use of saturated amplification in the receiver LO path. These details may be different depending on the LO frequency and receiver or downconverter band.

For instance, the anti-aliasing filters will suppress signals more than ~3.5 GHz away from the primary LO by at least **55 dB** (IRD062x). Second, the mixers will likely all be balanced, which should suppress LO noise and inputs by another **15 dB** or so. Finally, LO buffer amps inside the IRD modules will likely be run in compression, which would tend to suppress weak signals which are present on top of the primary LO. We can conjecture an additional 15 dB (TBC) for this effect. So, with these effects we can relax our spurious LO tone suppression spec (for signal beyond 3.5 GHz) to 133–55–15–15 = **-48 dBc**. Or, for tones close (within 3.5 GHz) to the carrier **-103 dB**c.

Parameter	Req. #	Value	Traceability
Spurious Signal Level Emission	ATF1600	Spurious signals generated by the system shall not exceed the equivalent isotropic radiated power limits specified in [AD05] See Table 3	SYS2104, EMC0310
Spurious Emission impacting IRD	ATF1605	Spurious signals generated by the system shall not exceed the equivalent isotropic radiated power limits specified in [AD05] See Table 3and detailed note "Spurious Emission Impacting IRD, ATF1605" below	SYS2104, EMC0310, [AD20]
Emission Verification Frequencies	ATF1610	Spurious signal emission levels shall be verified by test over a minimum range of 1 GHz up to 12 GHz. Modules or devices that may contain frequency content above 12 GHz shall be tested at least up to 50 GHz.	SYS2104, EMC0311
Low Frequency Emission	ATF1620	Spurious signal emission levels shall be quantified by test over an extended frequency range of 5 MHz to I GHz. While there is no emission threshold within this range, this information shall be collected to inform future system expansion.	SYS2104, SYS5602, EMC0312
RFI suppressing housings	ATF1630	RFI Suppression housings shall be used to contain and suppress spurious emissions, in order to meet the requirements derived from ATF1600 (see Table 3, column 6, for example)	[AD24]

7.8.2 Spurious RFI Emission

<i>Title</i> : ngVLA Antenna Time and Frequency Technical Requirements	Owner: Shillue	Date : 2024-07-10
NRAO Doc. #: 020.30.35.00.00-0004 REQ	2	Version: C

Spurious Emission ATF1600:

EMC0310 specifies spurious emission level versus frequency for spectral line and continuum emission. For Antenna LO and Timing these are both applicable but spectral line emission is likely to be the greater concern due to LO and digitizer harmonics, subharmonics, and spurious tones. Thus it is elaborated in the text below.

For reference the spectral line emission requirement from [AD05] is shown in Table 5 (reformatted). The columns reflecting 10m distance match [AD05] and would be pertinent for equipment located in the antenna pedestal. For equipment at the secondary focus (nearly co-located with the receiver, the numbers have been reworked to reflect lower acceptable limits (by 20 dB).

Table 5: Spectral Line emission limits from [AD05].

		spectral line 10m		spectral	line 1m
Freq	BW (kHz)	EIRP	dBm/Hz	EIRP	dBm/Hz
1	0.3	-129	-154	-149	-174
3	1	-115	-145	-135	-165
6	2	-106	-139	-126	-159
10	3	-100	-135	-120	-155
30	10	-84	-124	-104	-144
45	15	-78	-120	-98	-140
90	30	-67	-112	-87	-132

For reference the spectral line emission requirement from [AD05] is shown in Table 6 (reformatted; on the next page).

We can then further make a list of the currently projected frequencies for LO and digitizer signals and tabulate the maximum permissible radiation levels, detailed below in Table 6. Note that the sixth column represents the permissible emission for equipment at the secondary focus enclosure after all design mitigations **including RFI suppressing housings**. Shielding levels that may be required to meet the limits detailed here will be included in the ICD with the Antenna Electronics Bins, Modules, and Racks work package [AD24].

NRAO Doc. #: 020.30.35.00.00-0004 REO

Table 6: Maximum permissible spectral line spurious emission levels for select LO and digitizer frequencies.

		spectral		spectral	
LOs		line 10m		line 1m	
freq (GHz)	BW (kHz)	EIRP	dBm/kHz	EIRP	dBm/kHz
2.9	0.97	-116	-116	-136	-136
5.8	1.93	-106	-109	-126	-129
7.0	2.33	-104.5	-108	-124.5	-128
11.6	3.87	-104.5	-105	-124.5	-125
11.0					
	4.83	-96	-103	-116	-123
20.3	6.77	-92	-100	-112	-120
23.2	7.73	-89	-98	-109	-118
29.0	9.67	-85	-95	-105	-115
34.8	11.6	-82	-93	-102	-113
31.9	10.6	-83	-93	-103	-113
37.7	12.6	-81	-92	-101	-112
43.5	14.5	-79	-91	-99	-111
49.3	16.4	-77	-89	-97	-109
72.5	24.2	-71	-85	-91	-105
78.3	26.1	-70	-84	-90	-104
84.1	28.0	-69	-83	-89	-103
89.9	30.0	-67	-82	-87	-102
95.7	31.9	-66	-81	-86	-101
101.5	33.8	-64	-79	-84	-99
107.3	35.8	-62	-78	-82	-98
113.1	37.7	-61	-77	-81	-97

Note that the permissible limits are lower (i.e. more stringent) at the low end of the frequency range. For frequencies below I GHz, such as the digitizer reference frequency, possibly PLL clocks and other timing signals, the ngVLA [AD05] does not expressly limit emissions. For frequencies below I GHz, we will consider the I GHz emission limit shown in the first line of Table 5 to be a goal.

Spurious Emission Impacting IRD, ATF1605:

Note that the levels shown in Table 6 are applicable as well to the spurious emission from LO modules that could couple to the input of the IRD modules. Meeting this requirement may not have the same mitigation as coupling to the receiver input because both the LO and the IRD modules are expected to be housed in the same RFI suppressing module. However, ATF1500 requires very low level of conducted spurious emission. The level for radiated spurious emission is expected to be lower of course than the conducted emission. However, depending on the final design of the IRD downconverters and the Antenna Time and Frequency LO design, it could be possible for harmonics, subharmonics, or other spurious to present RFI to one or more IRD bands. It is necessary to analyze all possible cases and limit emissions especially that fall close to the LO frequency of a band (within 3.5 GHz). All such requirements arising from the design shall be detailed in the ICD with IRD [AD20].

<i>Title</i> : ngVLA Antenna Time and Frequency Technical Requirements	Owner: Shillue	Date : 2024-07-10
NRAO Doc. #: 020.30.35.00.00-0004 REQ	2	Version: C

7.9 Monitor and Control

Parameter	Req. #	Value	Traceability
Self-Monitoring	ATFI630	The ATF subsystem shall measure, report and	SYS2601,
		monitor a set of parameters that allow for	SYS3101
		determination of its status and may help predict or	
		respond to failures. This shall include but not be	
		limited to on/off status, power levels, frequency	
		lock status, and bias voltages.	
LRU Alerts	ATFI640	A subsystem alert shall be generated when an ATF	SYS3102
		LRU has an abnormal condition or failure.	
High-Cadence	ATF1650	The M&C interface shall be fast enough to support	SYS3105,
Monitoring		streaming of diagnostic data. This shall be	SYS2408
		applicable in operational mode without affecting	
		other performance requirements.	
LRU Hot	ATFI660	ATF LRUs intended for field replacement shall be	SYS3111
Swapping		hot-swappable by design, and recover with minimal	
		intervention by maintenance and operations staff.	
Remote Updates	ATFI670	Firmware in embedded processors and	SYS3223,
		configuration data in FPGAs shall be updateable	ETR0907
		remotely, in-situ.	
Automatic	ATFI680	The ATF subsystem shall be capable of reaching an	SYS3114
Configuration on		operationally-ready Standby state after a full power	
Restart		cycle without human intervention.	
Front End	ATFI690	The ATF subsystem shall include an engineering	SYS2407
Engineering		console to display status and aid in real-time	
Console		problem diagnosis.	
M&C	ATFI700	All DC powered LRUs and complex programmable	ETR0909
Commanded		devices shall be provided with a physical reset line	
Reset for DC		connected to a local M&C device to allow remote	
Powered Devices		reset commands to be sent. This could be	
		implemented as a ganged reset to all devices in an	
		LRU or as individual lines to each device (or group	
		of devices) as determined by the designer.	
M&C	ATFI7I0	All AC powered LRUs shall be connected to a	ETR0912
Commanded		remotely controllable Power Distribution Unit	
Reset for AC		(PDU) or similar device which can be remotely	
Powered Devices		commanded via the M&C system to power cycle	
		each individual device.	

With regard to the self-monitoring, alerts, and high cadence monitoring: these requirements may be satisfied by:

- an ATF LRU alone, in a module which has the onboard intelligence to report status and/or alarms
- by a combination of the ATF modules and the hardware interface layer as specified in [AD27]

<i>Title</i> : ngVLA Antenna Time and Frequency Technical Requirements	Owner: Shillue	Date : 2024-07-10
NRAO Doc. #: 020.30.35.00.00-0004 REC	2	Version: C

7.10 Lifecycle

Parameter	Req. #	Value	Traceability
Design Life	ATF1800	The integrated modules shall be designed to be	SYS2801,
		operated and supported for a period of 30 years.	ETR0903
Lifecycle	ATF1810	The ATF design shall minimize its lifecycle cost for	SYS2802
Optimization		30 years of operation.	
Parts Selection	ATF1820	Parts selection and procurement criteria shall	SYS2803,
and Procurement		include:	SYS2805,
Criteria		a. Sustainability and environmental impact	SYS2812,
		b. Adequate Supply of critical spares for array	ETR0901,
		lifecycle	ETR0902
		c. Risk mitigation against parts obsolesce and	
		long term availability	

Accounting for product development, integration, and array commissioning, it is reasonable to target a 30-year minimum overall lifetime.

Lifecycle costs include manufacturing, transportation, construction/assembly, operation, and decommissioning.

7.11 Configuration

The following table lists the configuration management requirements applicable to the ATF subsystem equipment.

Parameter	Req. #	Value	Traceability
Serial Numbers	ATFI900	Each LRU shall have both a visible and electronic	SYS3600
		serial number.	
Version Control	ATF1910	All custom software and firmware delivered as part	SYS3602
for Software and		of the ATF subsystem shall be version controlled via	
Firmware		a configuration management process.	
Configuration	ATF1920	Any configurable equipment shall retrieve its	SYS3603
Retrieval		hardware configuration immediately after	
		installation and power up.	
Physical Tracking	ATF1930	Any hardware deliverable or equipment not	ETR0404
		connected to the M/C subsystem shall be equipped	
		with a physical tracking label or device (bar code or	
		RFID tag), to allow quick and unique identification.	

Parameter	Req. #	Value	Traceability
Remote	ATF1940	The ATF modules shall report the following	SYS3600,
Identification		information to the M&C system, to the extent	ETR0403
		applicable, upon request:	
		I. Module/Model Number	
		2. Serial Number	
		3. CID Number	
		4. Hardware Revision Level	
		5. Software Revision Level	
		6. Firmware Revision Level	
		Note that the software and firmware revision	
		codes together represent a configuration that is	
		tracked under version control from ATF1910 and	
		ATF1920	
Documentation	ATF1950	Clear and complete documentation shall be	SYS6001-
		delivered with the ATF LRUs and equipment,	SYS6005

7.12 EMC/Immunity

ngVLA standards for Electromagnetic Compatibility and Immunity are developed and described in [AD03], [AD05], and [AD09].

meeting project format and standards

Parameter	Req. #	Value	Traceability
Analog shielding	ATF2200	Analog electronics, especially those containing oscillators and amplifiers, shall be shielded so that emission limits can be met. Careful EMC design shall limit conducted emission between and among subsystems – including by power supply wiring or ground loops.	SYS2106, SYS2107, EMC0322
Digital shielding	ATF2210	All digital equipment shall be shielded and have its AC or DC power line and communication line(s) filtered at the chassis.	SYS2106, SYS2107, EMC0327
Commercial equipment	ATF2220	Any Commercial off-the-shelf (COTS) equipment shall conform to IEC product family standards for immunity standards, or to the generic standard IEC 61000 – Part 6: Generic Standards if no product family standard is given. Additionally, the equipment shall have a CE mark or FCC compliance ID	SYS2016, EMC0401, EMC0402
Conducted Immunity, Testing	ATF2230	LRUs shall be designed and tested for immunity to conducted voltage and noise	SYS2106, EMC0411- 0412, EMC0421- 0424, EMC0431- 0432,

<i>Title</i> : ngVLA Antenna Time and Frequency Technical Requirements			Owner: Shillue	Da	ıte: 2024-07-10
NRAO Doc. #: 020.30.35.00.00-0004 REC			2	Ve	rsion: C
eter	Req. #	Value			Traceability

Parameter	Req. #	Value	Traceability
			EMC0451-
			0452,
			EMC0461-
			0462
Electrostatic	ATF2240	LRUs shall be designed for and tested to meet ESD	SYS2106,
Discharge,		discharge requirements	EMC0471-
Testing			0473,
			ETR0501,
			ETR0505,
			ETR0506
Hi-Speed Design	ATF2250	ATF modules incorporating high speed digital logic	SYS2016,
		shall be designed for low emission, incorporate best	ETR0714
		EMC practices, and be subject to rigorous review	
ESD, Storage and	ATF2260	ESD sensitive components and modules shall use	SYS3904,
Shipment		best practices for storage, shipment, and handling	ETR0503

7.13 Reliability, Availability, and Maintainability

Parameter	Req. #	Value	Traceability
Reliability Analysis	ATF2300	A Reliability, Availability, Maintainability analysis shall be performed and documented as a memo by each designer at the LRU level to locate weak design points and determine whether the design meets the Maintenance and Reliability requirements. [AD09]	ETR0904, SYS2402, SYS2801, SYS2802, SYS2805
Mean Time Between Failure/Mean Time Between Maintenance	ATF2310	The ATF subsystem as a whole shall have a MTBF and MTBM of 18,500 hours (2.11 years) or greater, contributing 9% to the overall antenna electronics budget Here failures are considered in the same category as maintenance, any equipment status that would require a human intervention to address	SYS2610, [AD11]
Array Element MTTR	ATF2330	The Array Elements shall have a Mean Time to Repair (MTTR) of less than 3 hours.	SYS2611
Modularization	ATF2340	The system shall be modularized into Line Replaceable Units (LRUs) to facilitate site maintenance.	SYS2403
Spares Planning	ATF2350	Failure analysis shall be used in the planning of spares inventory. Factors considered shall include the projected availability for spares, the time required to repair the failure, and the viability of critical vendors.	SYS3204
Operations and Maintenance: Transfer of Deliverables	ATF2360	All procedures, test equipment, and test software shall be delivered to the Operations and Maintenance staff prior to full operations.	SYS3211

<i>Title</i> : ngVLA Antenna Time and Frequency Technical Requirements	Owner: Shillue	Date : 2024-07-10
NRAO Doc. # : 020.30.35.00.00-0004 REQ	2	Version: C

Parameter	Req. #	Value	Traceability
LRU	ATF2380	LRUs should be interchangeable with no on-site	SYS3232
Interchangeability		calibration, tuning or alignment.	
Identify Failures	ATF2390	All LRUs shall identify a failed state via physical	SYS3234
Physically		display (e.g., LED).	
Report Predicted	ATF2400	All LRUs, where possible, shall report fault	SYS3236
Failures		prediction sensor data via the M&C system.	
Failure	ATF2410	All LRUs shall report failure information in line	SYS3237
Information		with failure isolation as identified in a FMECA	
Source		analysis.	
Robustness	ATF2420	All ngVLA electronics designs shall be subject to a	ETR0905
Analysis		robustness analysis. Results of this analysis are a	
		required part of the design review process.	
		Robustness shall be demonstrated against	
		environmental, power supply disturbance,	
		vibration, monitor and control, inputs out-of-	
		range.	

7.14 Design Requirements

Parameter	Req. #	Value	Traceability
Printed Circuit	ATF3200	For printed circuit boards incorporated into ATF	ETR0701,
Boards-		subsystem design:	ETR0712,
Standards		a) Design and manufacture shall meet the IPC	SYS2402,
		Standard IPC-A-600K	SYS2803,
		b) Design and manufacture Shall meet RoHS 2 and	SYS2805
		3 standards	
Printed Circuit	ATF3210	Requirements for PCB materials, markings, and	ETR0704-
Board Design		test and maintainability shall be met by design	07011,
			ETR0713,
			ETR0715-0717
Soldered	ATF3220	Soldered electrical connections shall use Class 2 of	ETRI301
Electrical		the IPC J-STD-001G Requirements for Soldered	
Connections		Electrical and Electronic Assemblies, per [AD09]	

Note: For commercial-off-the-shelf PCBs, requirements ATF3200 and ATF3220 are recommendations, with best effort to attempt to procure boards that meet as many of these requirements as possible.

Parameter	Req. #	Value	Traceability
Power Supply	ATF3300	ATF shall achieve full performance with power	[AD21]
Noise and		supply voltage stability and rms noise levels specified	
Stability		in ICD	
DC Voltages	ATF3310	All ATF equipment in the ngVLA powered from DC	ETR0821,
available		voltages shall voltages produced by the PSU	ETR0803

7.14.2 Power and Ground

<i>Title</i> : ngVLA Antenna Time and Frequency Technical Requirements			Owner: Shillue	Da	Date: 2024-07-10	
NRAO Doc. #: 020.30.35.00.00-0004 REQ			2	Version: C		
eter	Req. #	Value			Traceability	

Parameter			Traceability
		modules, currently + 5 VDC, +/- 7.5 VDC and +/- 17.5 VDC.	
PSU Voltage Tolerance	ATF3320	Devices powered from the PSU modules shall tolerate +/- 10% of the rated voltages.	ETR0823
LRU Physical Ground	ATF3330	LRU chassis or housing shall be electrically connected to the antenna structure using a proper grounding wire. This wire can be a separate ground connection or included in the connectorized harness carrying power to the device.	ETR0804
Power Supply Returns Separate from Ground	ATF3340	Structural/Chassis components and signal grounds shall never be used as a power supply return path.	ETR0814
Overcurrent Protection	ATF3350	All ngVLA Electronics systems shall implement overcurrent protection on LRUs.	ETR0805
Overcurrent Protection Device Monitoring	ATF3360	The ngVLA M&C system shall be able to monitor the state of overcurrent protection devices in an LRU. An exception is if the circuit protection device activated disables the LRUs M&C interface.	ETR0806
Thermal Protection	ATF3370	ngVLA LRUs shall be thermally protected.	ETR0807
Thermal Protection Monitoring	ATF3380	The LRU shall be able to monitor the state of thermal protection features. An exception is if the thermal protection activated disables the LRUs M&C interface.	ETR0808
Thermal Analysis	ATF3390	The designer shall analyze their designs and take steps to optimize thermal performance with a focus on proper cooling, thermal stability and the elimination of hot spots. The thermal design shall be published as a report and included in design reviews.	ETR0816
Power On Indicators	ATF3400	LRUs and power supplies shall contain externally visible LED power indicators with "steady blue" indicating "nominal operation" and "blinking blue" indicating "power is on but not meeting nominal conditions." In RFI shielded enclosures, these may be implemented with small LEDs or light pipes.	ETR0812
Battery Use	ATF3410	Batteries shall not be used in the ngVLA system except in the case of the antenna –48 VDC power system and a commercial UPS device for critical AC line powered equipment.	ETR0817
Transient Protection of LRU I/O & Power Connections	ATF3420	Transient Voltage Suppression devices shall be used on sensitive analog and digital I/O signals and power supplies entering or exiting a LRU. RF and other signals that will be adversely affected by the inclusion of these devices are exempt from this requirement.	ETR0818

7.14.3 Electrical Wiring, Cables, Connectors

Parameter	Req. #	Value	Traceability
Wiring Documentation and Labeling	ATF3500	Wiring documentation and labeling shall meet project standards [AD09]	ETRIIOI, ETRIIO2
DC voltage Wire Colors	ATF3510	DC voltages shall use a wiring color scheme as specified in [AD09]	ETR1103- ETR1123, ETR1154, ETR1155
AC power wiring colors	ATF3520	All AC wiring colors shall conform to US NEC requirements.	ETRI125
Wire and Cable installation	ATF3530	Wire and cable protection, materials, ruggedness, installation, and insulation shall be implemented according to [AD09]	ETR1125- ETR1132, ETR1156, ETR1157, ETR1189
Connector Documentation and Labeling	ATF3540	Connector documentation and labeling shall meet project standards [AD09]	ETRII33, ETRII34
Connector Selection	ATF3560	Connectors shall be selected for appropriate current rating, environmental rating, and expected number of mating cycles	ETRII35- ETRII37
Connectors for Hot Swap	ATF3570	If hot swapping is used, the design shall be supported by the selection of an appropriate connector to eliminate arcing, abnormal current flow, and sequencing issues	ETRII39
Connector Design for Ease of Operation	ATF3580	Connectors shall be chosen for ease of operational and maintenance use. This includes: a) Use of keying to prevent incorrect mating b) Use of clear labeling and/or color coding c) Use of standardized pinouts for cables/connectors used in multiple places	ETR1141, ETR1185, ETR1142
Crimped Connectors	ATF3590	Crimped wire connections shall be preferred over solder cup, and shall utilize best assembly practice per [AD09]	ETRI 186, ETRI 187
Connector Type, Retention, and Locking	ATF3600	Connectors shall meet project standards for reliable performance by complying with retention and locking standards. This is applicable to external electronic, RF, and fiber optic connectors, single and multi-pin. Internal to LRUs, PCB board connections and other critical interconnects shall be designed for positive retention. ETR1212 requires a documented analysis for satisfying this requirement.	ETRI197- ETRI212

7.14.4 Materials, Lighting, and Mechanical
--

Deveneeten	Den #	Value	Tuesekilitar
Parameter	Req. #	Value	Traceability
Metalwork	ATF3700	Metalwork used for modules, bins, and racks shall	ETRII43-
		use project standard recommendations for use of	ETRI 147,
		materials, plating and coating, surface preparation and painting.	ETRI 188
Lighting	ATF3710	Status lighting shall be by means of long-life LED or	ETRI 148-
		OLED sources. BLUE shall be used solely to indicate presence of power supply. RED shall be used solely to indicate faults or alarms conditions. WHITE shall be used only for illumination. Other colors may be used at the designer's discretion for other conditions or status indication. Brightness shall be set to the minimum necessary for the desired function.	ETRI 153
Fasteners	ATF3720	All screws or any type of assembly hardware shall use metric standard, and materials, labeling, and design shall be according to [AD09].	ETR1161- ETR1169, ETR1171, ETR1190, ETR1184
LRUs, Mechanical	ATF3730	LRU shall be designed for ease of installation and removal, be free of rough edges, and follow project	ETRI 170, ETRI 172,
		recommendations for assembly, installation, and	ETR1176-
		handling per [AD09]	ETRI178,
			ETRI 183
LRU	ATF3740	LRUs shall be documented with engineering	ETRI173-
Documentation and Dimensions		dimensions, units and tolerances per [AD09].	ETRI175

8 Safety

8.1 Safety Requirements

This section defines all design requirements necessary to support the Level-I Safety, Security, and Cybersecurity requirements.

Parameter	Req. #	Value	Traceability
Safety Specification	ATF4200	The ATF equipment shall comply with ngVLA LI Safety Specifications [AD07], including physical security and monitoring	SYS2700, SYS2704
Security Specification	ATF4210	The ATF equipment shall comply with Security Plan and Requirements [AD08]	SYS2703
		 Includes training, policy, planning in addition to hardware and physical elements 	

Parameter	Req. #	Value	Traceability
Cybersecurity	ATF4220	 Documented hazard analysis with standards approved by Safety and Systems IPT Established physical security control for each ngVLA location May include access control, entry locks, fire alarms or detectors, key control (equipment and doors), identification of sensitive property Compliance with NRAO Master 	SYS2702
Specification	A114220	 Compliance with NRAO Plaster Information Security Policy Compliance with NRAO Cyber Security Incident Response Policy Compliance with Cyber Security Access Control Policy Follows guidelines of NSF19-68 Section 6.3 "Guidelines for Cyber Security of NSF's Major Facilities" Password control, least privilege policy, identity management, strong access authentication Most recommendations, policy, and protocols applicable at level outside or above the hardware IPT, except perhaps: Apply security updates in timely manner Embedded device firmware with version control and update features Use of segregation and firewalls Reduce software to barest minimum 	3132702
Hazard Analysis	ATF4230	The ATF subsystem shall have hazard analysis performed.	SYS2700
LRU Weight Labels	ATF4240	LRUs in the ATF subsystem shall include at least one clearly visible label indicating the weight of the LRU in pounds. The label shall be compliant with applicable standards at the time of installation.	SYS2700, SYS3202, ETR0406
Hot Connect & Disconnect Warning Labels	ATF4250	In situations where, disconnecting cables or pulling of equipment with power on can cause damage, clearly visible labels shall be applied to warn on this condition.	SYS2700, SYS3202, ETR0410
Electrical and Optical Label Safety Standards	ATF4260	All electrical and optical safety labels shall be compliant with applicable standards at the time of installation.	ETR1016, SYS2700

<i>Title</i> : ngVLA Antenna Time and Frequency Technical Requirements	Owner: Shillue	Date : 2024-07-10
NRAO Doc. #: 020.30.35.00.00-0004 REC)	Version: C

Parameter	Req. #	Value	Traceability
Design for	ATF4270	All LRUs using Lasers or high intensity LEDs at	ETRIOI8,
Optical Safety		levels defined as dangerous in the ANSI Z136	SYS2700
		series of standards (RD02) shall be designed to	
		minimize or prevent human exposure.	
Optical Safety	ATF4280	In all LRUs containing lasers, clearly visible labels in	ETR1019,
Labels		accordance with the IEC 60825-1:2014 Standard	SYS2700
		(RD03) shall be applied.	
Connectors for	ATF4290	If hot swapping is used, the design shall be	ETRII38
Hot Swap		supported by the selection of an appropriate	
		connector for personnel and equipment safety	
No Exposed Live	ATF4300	Live signal or power pins in connectors shall not be	ETRI 140
Terminals		exposed while connectors are unmated.	

9 Interface Requirements

Antenna Time and Frequency has interfaces with the several major subsystems as detailed in the subsections below.

9.1 Interface to IRD

[AD20] 020.10.40.05.00-0005: Interface Control Document Between: Antenna Electronics Integrated Receiver and Downconverters (IRD) and Antenna Time and Frequency (ATF)

This interface details the requirements for the local oscillator to support the downconversion, and the digitizer and/or digitizer reference signal, as well as any timing signal needed by IRD. Mechanical, thermal, and electronic interfaces are included. Additional interface requirements will be detailed in the ICD for connector types and mechanical and thermal interfaces. A specific subset of these interface requirements (representing critical requirements) have been included in this document for tracking purposes and for completeness, as follows:

Parameter	Req. #	Value	Traceability
LO Frequency Table	ATF1205	See Section 7.1	See Section 7.1
LO Amplitude	ATFI230	See Section 7.3	See Section 7.3
LO Amplitude Stability	ATFI235	See Section 7.3	See Section 7.3
LO Phase Noise	ATFI240	See Section 7.4	See Section 7.4
LO Phase Drift	ATFI250	See Section 7.4	See Section 7.4
Digitizer Clock Phase Noise	ATFI260	See Section 7.4	See Section 7.4
Digitizer Clock Phase Drift	ATFI270	See Section 7.4	See Section 7.4
Return to Phase	ATFI280	See Section 7.4	See Section 7.4
JEDEC Standard Clock and Timing	ATF1290	See Section 7.5	See Section 7.5
Spurious Narrowband Tones	ATFI500	See Section 7.8.1	See Section 7.8.1
Spurious Emission impacting IRD	ATF1605	See Section 7.8.2	See Section 7.8.2

Table 7: ATF subsystem requirements tracked in ICD to IRD

NRAO Doc. #: 020.30.35.00.00-0004 REQ

9.2 Interface to PSU

[AD21] 020.10.40.05.00-0006 (Interface 0059): Interface Control Document Between: Antenna Electronics DC Power Supply (PSU) and Antenna Time and Frequency (ATF)

This interface details the requirements for DC power needed to supply ATF equipment. Mechanical, thermal, and electronic interfaces will be included. All of the requirements in Section 7.14.2 are applicable to this ICD.

9.3 Interface to WVR

[AD23] 020.10.40.05.00-0028: Interface Control Document Between: Water Vapor Radiometer (WVR) and Antenna Time and Frequency (ATF)

This interface details the requirements for supply of local oscillator or timing signals from ATF to the WVR. Mechanical, thermal, and electronic interfaces will be included.

9.4 Interface to BMR

[AD24] 020.10.40.05.00-0040 (Interface 0065): Interface Control Document Between Antenna Electronics: Bins, Modules, Racks (BMR) and Antenna Time and Frequency

This interface details the requirements for any bins, modules, or racks needed for ATF equipment. Mechanical, thermal, and electronic interfaces are included. Specific requirements which will be fully defined in the ICD have been included in this document for tracking purposes and for completeness, as follows:

Parameter	Req. #	Value	Traceability
RFI suppressing housings	ATFI630	See Section 7.1	See Section 7.1
Analog shielding	ATF2200	See Section 7.12	See Section 7.12
Digital shielding	ATF2210	See Section 7.12	See Section 7.12

 Table 8: ATF subsystem requirements tracked in ICD to BMR

9.5 Interface to AFD

[AD25] 020.10.40.05.00-0041 (Interface 0081): Interface Control Document Between Antenna Electronics: Antenna Fiber Distribution (AFD) and Antenna Time and Frequency (ATF)

This interface details the requirements for fiber optic interfaces to the ATF equipment. Mechanical, thermal, and electronic (optical) interfaces are included.

9.6 Interface to EEC

[AD26] 020.10.40.05.00-0070: Interface Control Document between Antenna Time and Frequency (ATF) and Antenna Electronics Environmental Control System (EEC)

This interface details the requirements for environmental control of the ATF equipment. Mechanical, thermal (air or liquid heat transfer), and electronic interfaces are included. The interface requirement will include specific detailed requirement for the EEC subsystem for thermal control such that the environmental requirements detailed in Sections 6.6, 6.7, and 6.8 are met.

Table 9: RTD subsystem requirements tracked in ICD to EEC.

Parameter	Req. #	Value	Traceability
Precision condition temperature range	LRT0320	See Section 6.6	See Section 6.6
Precision condition temperature stability	LRT0330	See Section 6.6	See Section6.6
Normal condition temperature range	LRT390	See Section 6.7	See Section 6.7
Normal condition temperature stability	LRT400	See Section 6.7	See Section 6.7

9.7 Interface to HIL

[AD27] 020.10.40.05.00-0078: Interface Control Document Between: Antenna Electronics Monitor and Control Hardware Interface Layer (HIL) and Antenna Time and Frequency (ATF)

This interface details the requirements for interface between the ATF equipment hardware layer and the software supervisory layer.

9.8 Interface to RTD

[AD28] 020.10.40.05.00-0125: Interface Control Document Between: LO Reference and Timing – Distribution (RTD) and Antenna Time and Frequency (ATF)

This interface details the requirements for signal, timing, and connection between the ATF and the roundtrip distribution equipment that distributes the primary time and frequency references to the antennas.

Table 10: ATF subsystem requirements tracked in ICD to IRD

Parameter	Req. #	Value	Traceability
RTD Reference Frequency	ATF6000	2.9 GHz	ATFI205
RTD Reference Frequency Amplitude	ATF6010	TBD	
RTD Reference Frequency Amplitude	ATF6020	TBD	
Stability			
RTD Reference Frequency Phase Noise	ATF6030	44 fsec, See Table 4	ATFI240
RTD Reference Frequency Phase Drift	ATF6040	42 fsec, See Table 3	ATFI250
RTD Timing I PPS Monitoring Interface	ATF6050	TBD	TBD

9.9 Interface to DBE

[AD22] 020.10.40.05.00-0152: Interface Control Document Between: LO Reference and Timing – Distribution (RTD) and Antenna Time and Frequency (ATF)

This interface details the requirements for signal, timing, and connection between the ATF and the roundtrip distribution equipment that distributes the primary time and frequency references to the antennas.

Table 11: ATF subsystem requirements tracked in ICD to IRD

Parameter	Req. #	Value	Traceability
DBE Input Reference Frequency	ATF6100	100 MHz	See Section 7.1
DBE Frequency Input Accuracy	ATF6110	42 fsec at 300s	SYS5001
DBE Frequency Input Phase Noise	ATF6120	Signal requirements	RD09
DBE Frequency Signal Type	ATF6130	per JESD standard.	RD09
DBE Frequency Signal Level	ATF6140	RD09 is latest	RD09
		standard JESD204C	

Parameter	Req. #	Value	Traceability
		JESD204D	
		JESD204D	
I PPS Timing Stability	ATF6150	See Section 7.6	ATFI 300
Fiber Transmitter	ATF6160	40Gbit/sec multi-	
		mode fiber	
		transceiver	

10 Technical Metrics

Technical Metrics are used throughout the project and should be monitored throughout project design and development. These parameters strongly influence the eventual effectiveness of the facility and are useful high-level metrics for trade-off decisions. Technical Performance Measures are a category of technical metrics defined at the subsystem level.

10.1 Technical Performance Measures

The Technical Performance Measures are requirements that closely impact the overall performance of the ngVLA system and are therefore considered of higher importance. The following Technical Performance Measures are identified for optimization and monitoring throughout the design phase.

 Table 12: ngVLA Key Performance Parameters.

Technical Performance Measures	Req. #	Traceability LI Re#
LO Phase Noise	ATFI240	SYS5001, SYS1503, CAL0314
LO Phase Drift	ATF1250	SYS5001, SYS1504, SYS1505

NRAO Doc. #: 020.30.35.00.00-0004 REO

II Verification

The design will be verified to meet the requirements by analysis (A), inspection (I), a demonstration (D), or a test (T), each defined below.

Verification by Analysis: The fulfillment of the specified performance shall be demonstrated by appropriate analysis (hand calculations, finite element analysis, thermal modeling, etc.), which will be checked by the ngVLA project office during the design phase.

Verification by Inspection: The compliance of the developed system is determined by a simple inspection (of the design documentation or deliverables) or measurement.

Verification by Demonstration: The compliance of the developed feature is determined by a demonstration.

Verification by Test: The compliance of the developed subsystem with the specified performance shall be demonstrated by an acceptance test.

Multiple verification methods are allowed over the course of the design phase, although the primary (final) verification method is identified below.

11.1 Environmental Testing

The following environmental test conditions are defined:

Precision Operating Conditions: temperature range and max rate of change (POC): corresponding to requirements ATF0320, ATF0330

- Critical requirements shall be tested at the minimum, median, and maximum temperature
- Stability testing shall be conducted under temperature rate of change defined for POC

Normal Operating Conditions: temperature range and max rate of change (NOC): corresponding to requirements ATF0390, ATF0400

- Critical requirements shall be tested at the minimum, median, and maximum temperature
- Stability testing shall be conducted under temperature rate of change defined for NOC

Limit Operating Conditions (LOC): Components exposed to Limit conditions during operations shall be tested for safe operation and for not incurring residual damage. Test profiles shall include:

- Start-up sequence from off to operational at minimum temperature (ATF0410) (at least 20 cycles).
- Extended operation (60 minutes) at maximum operating temperature (ATF0410)
- Maximum rate of change of temperature (up and down) between minimum and maximum values (at least 20 cycles) (ATF0420)

Transport Conditions (Shock & Vibe) (SV):

- All LRUs that are transported shall be tested for not incurring residual damage at maximum transportation temperature over an extended period (at least 4 hours) (ATF0180)
- Prior to and after conducting SV testing, critical operational performance measures shall be tested (ATF0190, ATF0200)

11.2 Subsystem Verification Table

D	Devenue of a w/De avvivo and	•			–
Req. #	Parameter/Requirement	Α	*	D	Т
ATFI 100	Size of Equipment Enclosures		*		
ATFIII0	Weight of Equipment Enclosures		~~		
ATFI200	LO Frequency			*	* POC, LOC, SV
ATFI205	LO Frequency Table			*	* NOC
ATFI2I0	LO Frequency Offsets				* NOC
ATFI220	Tuning				* NOC
ATFI225	LO Switching Speed				* NOC
ATFI230	LO Amplitude				* POC, LOC, SV
ATFI235	LO Amplitude Stability				* POC
ATFI240	LO Phase Noise				* POC
ATFI250	LO Phase Drift				* POC
ATFI260	Digitizer Clock Phase Noise				* POC
ATFI270	Digitizer Clock Phase Drift				* POC
ATFI300	Timing at RTD output				* POC
ATFI355	Time Accuracy – Antenna Station				* POC
	Functions				
ATFI357	Antenna timing				* POC
ATFI380	Timing to DBE				* POC
ATFI2I5	LO Return to Phase				* POC
ATFI400	Standby Mode			*	
ATFI4I0	Automatic Initialization			*	
ATFI420	Operating Modes			*	
ATFI500	Spurious Narrowband Tones				* NOC
ATFI600	Spurious Signal Level Emission				* NOC
ATFI605	Spurious Emission impacting IRD			*	
ATFI6I0	Emission Verification Frequencies		*		
ATFI620	Low Frequency Emission			*	
ATFI630	Self-Monitoring				* NOC, LOC, SV
ATFI640	LRU Alerts				* NOC, LOC, SV
ATFI650	High-Cadence Monitoring			*	, ,
ATFI660	LRU Hot Swapping	*		*	
ATFI670	Remote Updates			*	
ATFI680	Automatic Configuration on Restart			*	
ATFI690	Front End Engineering Console		*		
ATFI700	M&C Commanded Reset for DC				* NOC
	Powered Devices				
ATFI7I0	M&C Commanded Reset for AC				* NOC
	Powered Devices				
ATF1800	Design Life	*		1	
ATF1810	Lifecycle Optimization	*		1	
ATF1820	Parts Selection and Procurement	*		1	
	Criteria				
ATF1900	Serial Numbers	+	*	+	1

<i>Title</i> : ngVLA Antenna Time and Frequency Technical Requirements	Owner : Shillue	Date : 2024-07-10
NRAO Doc. #: 020.30.35.00.00-0004 REC	2	Version: C

ATF1910Version Control for Software and Firmware*ATF1920Configuration Retrieval*ATF1930Physical Tracking*ATF1940Remote Identification*ATF1940Remote Identification*ATF1950Documentation*ATF2200Analog shielding*ATF2200Analog shielding*ATF2200Commercial equipment*ATF2200Conducted lmmunity, Testing*ATF2230Conducted lmmunity, Testing*ATF2240Electrostatic Discharge, Testing*ATF2250Hi-Speed Design*ATF2200Reliability Analysis*ATF2300Reliability Analysis*ATF2300Reliability Analysis*ATF2300Array Element MTTR*ATF2300Array Element MTTR*ATF2300Array Element MTTR*ATF2300Report of Deliverables*ATF2300Iku Interchangeability*ATF2300Iku Interchangeability*ATF2300Iku Interchangeability*ATF2300Identify Failures Physically*ATF2300Report Predicted Failures*ATF2300Iku Information Source*ATF2300Printed Circuit Boards- Standards*ATF2300Iku Information Source*ATF2300Icu Information Source*ATF2300Identify Failures Information Source*ATF3200Printed Cir	Req. #	Parameter/Requirement	Α	I	D	Т
ATF1920Configuration Retrieval*ATF1930Physical Tracking*ATF1940Remote Identification*ATF1950Documentation*ATF200Analog shielding*ATF210Digital shielding*ATF220Commercial equipment*ATF2230Conducted Immunity, Testing*ATF2240Electrostatic Discharge, Testing*ATF2250Hi-Speed Design*ATF2300Reliability Analysis*ATF2300Reliability Analysis*ATF2300Mean Time Between Failures*ATF2300Mean Time between Failures*ATF2300Array Element MTTR*ATF2340Modularization*ATF2340Modularization*ATF2340Modularization*ATF2340Modularization*ATF2340Modularization*ATF2340Modularization*ATF2340Modularization*ATF2340Modularization*ATF2340Modularization*ATF2340Modularization*ATF2340Report Predicted Failures*ATF2340Report Predicted Failures*ATF2340Report Predicted Failures*ATF2340Report Predicted Failures*ATF2340Robustness Analysis*ATF2400Report Predicted Failures*ATF2400Robustness Analysis*ATF3200 <td>ATFI9I0</td> <td>Version Control for Software and</td> <td></td> <td>*</td> <td></td> <td></td>	ATFI9I0	Version Control for Software and		*		
ATF1930Physical Tracking*ATF1940Remote Identification*ATF1950Documentation*ATF2200Analog shielding*ATF2210Digital shielding*ATF2210Digital shielding*ATF2210Commercial equipment*ATF2230Conducted Immunity, Testing*ATF2240Electrostatic Discharge, Testing*ATF2250Hi-Speed Design*ATF2260ESD, Storage and Shipment*ATF2300Reliability Analysis*ATF2310Mean Time Between Failures*ATF2330Array Element MTTR*ATF2350Spares Planning*ATF2350Spares Planning*ATF2370Automated Failure Reporting*ATF2380LRU Interchangeability*ATF2390Identify Failures Physically*ATF2400Report Predicted Failures*ATF2300Report Predicted Failures*ATF2300Identify Failures Royce*ATF2300Identify Failures Royce*ATF2300Printed Circuit Boards- Standards*ATF3200Printed Circuit Boards- Standards*ATF3200Soldered Electrical Connections*		Firmware				
ATF1940Remote Identification*ATF1950Documentation*ATF2200Analog shielding*ATF2210Digital shielding*ATF2210Digital shielding*ATF2200Commercial equipment*ATF2200Conducted Immunity, Testing*ATF2200Conducted Immunity, Testing*ATF2200Electrostatic Discharge, Testing*ATF2200Electrostatic Discharge, Testing*ATF2200ESD, Storage and Shipment*ATF2300Reliability Analysis*ATF2310Mean Time Between Failures*ATF2320Mean Time between Maintenance*ATF2330Array Element MTTR*ATF2350Spares Planning*ATF2360Transfer of Deliverables*ATF2370Automated Failure Reporting*ATF2380LRU Interchangeability*ATF2390Identify Failures Physically*ATF2400Report Predicted Failures*ATF2400Report Predicted Failures*ATF2400Report Predicted Failures*ATF2400Report Predicted Failures*ATF2400Report Predicted Failures*ATF2400Report Predicted Failures*ATF2300Identify Failures Physically*ATF2400Report Predicted Failures*ATF2400Report Predicted Failures*ATF2400Report Predicted Failures*A	ATFI920	Configuration Retrieval			*	
ATF1950Documentation*ATF2200Analog shielding**ATF2210Digital shielding**ATF2210Digital shielding**ATF2220Commercial equipment**ATF2230Conducted Immunity, Testing**ATF2240Electrostatic Discharge, Testing**ATF2260ESD, Storage and Shipment**ATF2310Reliability Analysis**ATF2320Mean Time Between Failures**ATF2310Mean Time between Maintenance**ATF2330Array Element MTTR**ATF2350Spares Planning**ATF2360Transfer of Deliverables**ATF2370Automated Failure Reporting**ATF2380LRU Interchangeability**ATF2390Identify Failures Physically**ATF2400Report Predicted Failures**ATF2400Report Predicted Failures**ATF2380LRU Interchangeability**ATF2400Report Predicted Failures**ATF2410Failure Information Source**ATF2410Failure Information Source**ATF3210Printed Circuit Boards- Standards*ATF3210Printed Circuit Board-Design*ATF3210Printed Circuit Board-Design*ATF3200Soldered	ATFI930	Physical Tracking		*		
ATF2200Analog shielding**ATF2210Digital shielding***ATF2210Commercial equipment**ATF2220Commercial equipment**ATF2230Conducted Immunity, Testing**ATF2240Electrostatic Discharge, Testing**ATF2260ESD, Storage and Shipment**ATF2300Reliability Analysis**ATF2310Mean Time Between Failures**ATF2320Mean Time Between Failures**ATF2320Mean Time between Maintenance**ATF2330Array Element MTTR**ATF2340Modularization**ATF2350Spares Planning**ATF2370Automated Failure Reporting**ATF2380LRU Interchangeability**ATF2400Report Predicted Failures**ATF2410Failure Information Source**ATF2420Robustness Analysis**ATF3210Printed Circuit Boards- Standards**ATF3210Printed Circuit Boards- Standards**ATF3220Soldered Electrical Connections**	ATF1940	Remote Identification			*	
ATF2210Digital shielding**ATF2210Commercial equipment**ATF2220Conducted Immunity, Testing**ATF2230Conducted Immunity, Testing**ATF2240Electrostatic Discharge, Testing**ATF2250Hi-Speed Design**ATF2260ESD, Storage and Shipment**ATF2300Reliability Analysis**ATF2310Mean Time Between Failures**ATF2320Mean Time between Failures**ATF2330Array Element MTTR**ATF2340Modularization**ATF2350Spares Planning**ATF2370Automated Failure Reporting**ATF2380LRU Interchangeability**ATF2400Report Predicted Failures**ATF2410Failure Information Source**ATF2400Report Predicted Failures**ATF2400Report Predicted Standards**ATF3200Printed Circuit Boards- Standards**ATF3210Printed Circuit Boards- Standards**ATF3220Soldered Electrical Connections**	ATF1950	Documentation		*		
ATF2220Commercial equipment*ATF2230Conducted Immunity, Testing* NOCATF2240Electrostatic Discharge, Testing* NOCATF2260ESD, Storage and Shipment*ATF2200Reliability Analysis*ATF2300Reliability Analysis*ATF2310Mean Time Between Failures*ATF2320Mean Time between Maintenance*ATF2330Array Element MTTR*ATF2340Modularization*ATF2350Spares Planning*ATF2370Automated Failure Reporting*ATF2380LRU Interchangeability*ATF2390Identify Failures Physically*ATF2400Report Predicted Failures*ATF2400Report Predicted Failures*ATF2410Failure Information Source*ATF2420Robustness Analysis*ATF3200Printed Circuit Boards- Standards*ATF3210Printed Circuit Boards- Standards*ATF3220Soldered Electrical Connections*	ATF2200	Analog shielding	*	*		
ATF2230Conducted Immunity, Testing* NOCATF2240Electrostatic Discharge, Testing* NOCATF2250Hi-Speed Design*ATF2260ESD, Storage and Shipment*ATF2300Reliability Analysis*ATF2310Mean Time Between Failures*ATF2320Mean Time between Maintenance*ATF2330Array Element MTTR*ATF2340Modularization*ATF2350Spares Planning*ATF2370Automated Failure Reporting*ATF2380LRU Interchangeability*ATF2390Identify Failures Physically*ATF2400Report Predicted Failures*ATF2410Failure Information Source*ATF3200Printed Circuit Boards- Standards*ATF3210Printed Circuit Boards- Standards*ATF3220Soldered Electrical Connections*	ATF2210	Digital shielding	*	*		
ATF2240Electrostatic Discharge, Testing* NOCATF2250Hi-Speed Design*ATF2260ESD, Storage and Shipment*ATF2300Reliability Analysis*ATF2310Mean Time Between Failures*ATF2320Mean Time between Maintenance*ATF2330Array Element MTTR*ATF2340Modularization*ATF2350Spares Planning*ATF2360Transfer of Deliverables*ATF2380LRU Interchangeability*ATF2390Identify Failures Physically*ATF2400Report Predicted Failures*ATF2400Report Predicted Failures*ATF2410Failure Information Source*ATF2420Robustness Analysis*ATF3200Printed Circuit Boards- Standards*ATF3210Printed Circuit Boards- Standards*ATF3220Soldered Electrical Connections*	ATF2220	Commercial equipment		*		
ATF2240Electrostatic Discharge, Testing* NOCATF2250Hi-Speed Design*ATF2260ESD, Storage and Shipment*ATF2300Reliability Analysis*ATF2310Mean Time Between Failures*ATF2320Mean Time between Maintenance*ATF2330Array Element MTTR*ATF2340Modularization*ATF2350Spares Planning*ATF2360Transfer of Deliverables*ATF2370Automated Failure Reporting*ATF2380LRU Interchangeability*ATF2400Report Predicted Failures*ATF2400Report Predicted Failures*ATF2400Report Predicted Failures*ATF2410Failure Information Source*ATF2420Robustness Analysis*ATF3200Printed Circuit Boards- Standards*ATF3210Printed Circuit Boards- Standards*ATF3220Soldered Electrical Connections*	ATF2230	Conducted Immunity, Testing				* NOC
ATF2250Hi-Speed Design*ATF2260ESD, Storage and Shipment*ATF2300Reliability Analysis*ATF2310Mean Time Between Failures*ATF2320Mean Time between Maintenance*ATF2330Array Element MTTR*ATF2340Modularization*ATF2350Spares Planning*ATF2360Transfer of Deliverables*ATF2370Automated Failure Reporting*ATF2380LRU Interchangeability*ATF2390Identify Failures Physically*ATF2400Report Predicted Failures*ATF2410Failure Information Source*ATF2420Robustness Analysis*ATF3200Printed Circuit Boards- Standards*ATF3210Printed Circuit Boards- Standards*ATF3220Soldered Electrical Connections*	ATF2240					* NOC
ATF2260ESD, Storage and Shipment*ATF2300Reliability Analysis*ATF2310Mean Time Between Failures*ATF2320Mean Time between Maintenance*ATF2330Array Element MTTR*ATF2340Modularization*ATF2350Spares Planning*ATF2360Transfer of Deliverables*ATF2370Automated Failure Reporting*ATF2380LRU Interchangeability*ATF2390Identify Failures Physically*ATF2400Report Predicted Failures*ATF2410Failure Information Source*ATF2420Robustness Analysis*ATF3200Printed Circuit Boards- Standards*ATF3210Printed Circuit Board-Design*ATF3220Soldered Electrical Connections*	ATF2250		*			
ATF2300Reliability Analysis*ATF2310Mean Time Between Failures*ATF2320Mean Time between Maintenance*ATF2330Array Element MTTR*ATF2340Modularization*ATF2350Spares Planning*ATF2360Transfer of Deliverables*ATF2370Automated Failure Reporting*ATF2380LRU Interchangeability*ATF2390Identify Failures Physically*ATF2400Report Predicted Failures*ATF2410Failure Information Source*ATF2420Robustness Analysis*ATF3200Printed Circuit Boards- Standards*ATF3210Printed Circuit Board-Design*ATF3220Soldered Electrical Connections*	ATF2260			*		
ATF2310Mean Time Between Failures*ATF2320Mean Time between Maintenance*ATF2330Array Element MTTR*ATF2340Modularization*ATF2350Spares Planning*ATF2360Transfer of Deliverables*ATF2370Automated Failure Reporting*ATF2380LRU Interchangeability*ATF2390Identify Failures Physically*ATF2400Report Predicted Failures*ATF2410Failure Information Source*ATF2420Robustness Analysis*ATF3200Printed Circuit Boards- Standards*ATF3210Printed Circuit Board-Design*ATF3220Soldered Electrical Connections*	ATF2300		*			
ATF2330Array Element MTTR*ATF2340Modularization*ATF2350Spares Planning*ATF2360Transfer of Deliverables*ATF2370Automated Failure Reporting*ATF2380LRU Interchangeability*ATF2390Identify Failures Physically*ATF2400Report Predicted Failures*ATF2410Failure Information Source*ATF2420Robustness Analysis*ATF3200Printed Circuit Boards- Standards*ATF3210Printed Circuit Board-Design*ATF3220Soldered Electrical Connections*	ATF2310		*			
ATF2330Array Element MTTR*ATF2340Modularization*ATF2350Spares Planning*ATF2360Transfer of Deliverables*ATF2370Automated Failure Reporting*ATF2380LRU Interchangeability*ATF2390Identify Failures Physically*ATF2400Report Predicted Failures*ATF2410Failure Information Source*ATF2420Robustness Analysis*ATF3200Printed Circuit Boards- Standards*ATF3210Printed Circuit Board-Design*ATF3220Soldered Electrical Connections*	ATF2320	Mean Time between Maintenance	*			
ATF2340Modularization*ATF2350Spares Planning*ATF2360Transfer of Deliverables*ATF2370Automated Failure Reporting*ATF2380LRU Interchangeability*ATF2390Identify Failures Physically*ATF2400Report Predicted Failures*ATF2410Failure Information Source*ATF2420Robustness Analysis*ATF3200Printed Circuit Boards- Standards*ATF3210Printed Circuit Board-Design*ATF3220Soldered Electrical Connections*	ATF2330		*			
ATF2350Spares Planning*ATF2360Transfer of Deliverables*ATF2370Automated Failure Reporting*ATF2380LRU Interchangeability*ATF2390Identify Failures Physically*ATF2400Report Predicted Failures*ATF2410Failure Information Source*ATF2420Robustness Analysis*ATF3200Printed Circuit Boards- Standards*ATF3210Printed Circuit Board-Design*ATF3220Soldered Electrical Connections*				*		
ATF2360Transfer of Deliverables*ATF2370Automated Failure Reporting*ATF2380LRU Interchangeability*ATF2390Identify Failures Physically*ATF2400Report Predicted Failures*ATF2410Failure Information Source*ATF2420Robustness Analysis*ATF3200Printed Circuit Boards- Standards*ATF3210Printed Circuit Board-Design*ATF3220Soldered Electrical Connections*		Spares Planning	*			
ATF2370Automated Failure Reporting*ATF2380LRU Interchangeability*ATF2390Identify Failures Physically*ATF2400Report Predicted Failures*ATF2410Failure Information Source*ATF2420Robustness Analysis*ATF3200Printed Circuit Boards- Standards*ATF3210Printed Circuit Board-Design*ATF3220Soldered Electrical Connections*				*		
ATF2380LRU Interchangeability*ATF2390Identify Failures Physically*ATF2400Report Predicted Failures*ATF2410Failure Information Source*ATF2420Robustness Analysis*ATF3200Printed Circuit Boards- Standards*ATF3210Printed Circuit Board-Design*ATF3220Soldered Electrical Connections*					*	
ATF2390Identify Failures Physically*ATF2400Report Predicted Failures*ATF2410Failure Information Source*ATF2420Robustness Analysis*ATF3200Printed Circuit Boards- Standards*ATF3210Printed Circuit Board-Design*ATF3220Soldered Electrical Connections*		1 9		*		
ATF2400Report Predicted Failures*ATF2410Failure Information Source*ATF2420Robustness Analysis*ATF3200Printed Circuit Boards- Standards*ATF3210Printed Circuit Board-Design*ATF3220Soldered Electrical Connections*					*	
ATF2410Failure Information Source*ATF2420Robustness Analysis*ATF3200Printed Circuit Boards- Standards*ATF3210Printed Circuit Board-Design*ATF3220Soldered Electrical Connections*					*	
ATF2420Robustness Analysis*ATF3200Printed Circuit Boards- Standards*ATF3210Printed Circuit Board-Design*ATF3220Soldered Electrical Connections*				*		
ATF3200Printed Circuit Boards- Standards*ATF3210Printed Circuit Board-Design*ATF3220Soldered Electrical Connections*			*			
ATF3210Printed Circuit Board-Design*ATF3220Soldered Electrical Connections*		-		*		
ATF3220 Soldered Electrical Connections *				*		
				*		
	ATF3300	LRU Power Input		*		
ATF3310 LRU Physical Ground *				*		
ATF3320 Power Supply Returns Separate from *				*		
Ground						
ATF3330 DC Voltages available *	ATF3330			*		
ATF3340 PSU Voltage Tolerance: Test Key * NOC						* NOC
Performance Parameters over full						
range of power supply voltages						
ATF3350 Overcurrent Protection *	ATF3350			*		
ATF3360 Overcurrent Protection Device *					*	
Monitoring						
ATF3370 Thermal Protection *	ATF3370			*		
ATF3380 Thermal Protection Monitoring *	ATF3380	Thermal Protection Monitoring			*	
ATF3390 Thermal Analysis *			*			
ATF3400 Power On Indicators *					*	
ATF3410 Battery Use *		Battery Use		*		

<i>Title</i> : ngVLA Antenna Time and Frequency Technical Requirements	Owner: Shillue	Date : 2024-07-10
		Vanita of C

NRAO Doc	#: 020.30.35.00.00-0004	REQ
----------	-------------------------	-----

Req. #	Parameter/Requirement	Α	I	D	Т
ATF3420	Transient Protection		*		
ATF3500	Wiring Documentation and Labeling		*		
ATF3510	DC voltage Wire Colors		*		
ATF3520	AC power wiring colors		*		
ATF3530	Wire and Cable installation		*		
ATF3540	Connector Documentation and		*		
	Labeling				
ATF3560	Connector Selection		*		
ATF3570	Connectors for Hot Swap		*		
ATF3580	Connector Design for Ease of		*		
	Operation				
ATF3590	Crimped Connectors		*		
ATF3700	Metalwork		*		
ATF3710	Lighting		*		
ATF3720	Fasteners		*		
ATF3730	LRUs, mechanical		*		
ATF3740	LRU documentation and dimensions		*		
ATF4200	Safety Specification	*			
ATF4210	Security Specification	*			
ATF4220	Cybersecurity Specification	*			
ATF4230	Hazard Analysis	*			
ATF4240	LRU Weight Labels		*		
ATF4250	Hot Connect & Disconnect Warning		*		
	Labels				
ATF4260	Electrical and Optical Label Safety		*		
	Standards				
ATF4270	Design for Optical Safety	*			
ATF4280	Optical Safety Labels		*		
ATF4290	Connectors for Hot Swap		*		
ATF4300	No Exposed Live Terminals		*		
ATF5200	As-Built Drawings		*		
ATF5210	Operations & Maintenance Manuals		*		
ATF5220	Units		*		
ATF5230	Language		*		
ATF5240	Electronic Document Format		*		
ATF5250	Compliance Matrix		*		
ATF5260	Test Plan		*		
ATF5270	Design document		*		
ATF5280	RFI/EMC/Immunity Design report		*		
ATF5290	RAM Report		*		
ATF5300	Safety Design Report		*		
ATF5310	Reliability and Robustness Report		*		
ATF5320	LRU Documentation		*		
ATF6000	RTD Reference Frequency			*	
ATF6010	RTD Reference Frequency Amplitude				*

<i>Title</i> : ngVLA Antenna Time and Frequency Technical Requirements	Owner: Shillue	Date : 2024-07-10
NRAO Doc. #: 020.30.35.00.00-0004 REQ	2	Version: C

Req. #	Parameter/Requirement	Α	I	D	Т
ATF6020	RTD Reference Frequency Amplitude				*
	Stability				
ATF6030	RTD Reference Frequency Phase				*
	Noise				
ATF6040	RTD Reference Frequency Phase Drift				*
ATF6050	RTD Timing I PPS Monitoring			*	
	Interface				
ATF6100	DBE Input Reference Frequency			*	
ATF6110	DBE Frequency Input Accuracy				*
ATF6120	DBE Frequency Input Phase Noise				*
ATF6130	DBE Frequency Signal Type			*	
ATF6140	DBE Frequency Signal Level			*	
ATF6150	I PPS Timing Stability				*
ATF6160	Fiber Transmitter		*		

12 Appendix

12.1 Abbreviations and Acronyms

Acronym	Description
AD	Applicable Document
ADC	Analog to Digital Converter
AFD	Antenna Fiber Distribution subsystem
AIV	Acceptance, Integration, and Verification
ANSI	American National Standards Institute
ATF	Antenna Time and Frequency
BMR	Bins, Modules, and Racks subsystem
CDR	Critical Design Review
CE	Conformite Europienne
CI	Configuration Item
CID	Configuration Item Data
CoDR	Conceptual Design Review
COTs	Commercial off the shelf
CSP	Central Signal Processor
DAC	Digital to Analog Converter
DBE	Digital Backend
DC	Direct Current
DSP	Digital Signal Processor
EEC	Antenna Electronics Environmental Control subsystem
EIRP	Emitted Isotropic Radiated Power
EMC	Electromagnetic Compatibility

O.	<i>Title</i> : ngVLA Antenna Time and Frequency Technical Requirements	Owner: Shillue	Date: 2024-07-10
ngvla	NRAO Doc. #: 020.30.35.00.00-0004 REQ	2	Version: C

Acronym	Description
EMI	Electromagnetic Interference
ESD	Electrostatic Discharge
FCC	Federal Communications Corporation
FDR	Final Design Review
FED	Front End subsystem
FMECA	Failure Mode Effects Analysis
FPGA	Field Programmable Gate Array
GHz	GigaHertz
GPS	Global Positioning System
HIL	Hardware Interface Layer
HVAC	Heating, Ventilation, and Air Conditioning
I/F	Interface
I/O	Input-Output
ICD	Interface Control Document
IEC	International Electrotechnical Commission
IPC	Institute for Printed Circuits
IPT	Integrated Product Team
IRD	Integrated Receiver Digitizer
JESD	JEDEC Standards
KPP	Key Performance Parameter
LED	Light Emitting Diode
LO	Local Oscillator
LOC	Limiting Operational Conditions
LRU	Line Replaceable Unit
M/C	Monitor and Control
MCL	Monitor and Control subsystem
MOE	Measure of Effectiveness
MOP	Measure of Performance
MTBF	Mean Time Between Failure
MTTM	Mean Time to Maintenance
MTTR	Mean Time to Repair
NEC	National Electrical Code
ngVLA	Next Generation Very Large Array
NOC	Normal Operating Conditions
NRAO	National Radio Astronomy Observatory
OLED	Organic Light Emitting Diode
PBS	Product Breakdown Structure
PCB	Printed Circuit Board
PDF	Portable Document Format
PDU	Power Distribution Unit

<i>Title</i> : ngVLA Antenna Time and Frequency Technical Requirements	Owner: Shillue	Date : 2024-07-10
NRAO Doc. #: 020.30.35.00.00-0004 REQ		Version: C

Acronym	Description
PE	Project Engineer
PLL	Phase Lock Loop
POC	Precision Operating Condition
PSU	DC Power Supply subsystem
RD	Reference Document
RF	Radio Frequency
RFI	Radio Frequency Interference
RFID	Radio Frequency Identification
RSS	Root Sum Square
RTD	LO Reference and Timing - Distribution
SRU	Shop Replaceable Unit
TAI	International Atomic time
ТВС	To Be Confirmed
TBD	To Be Determined
TPM	Technical Performance Measure
UPS	Uninterruptible Power Supply
WVR	Water Vapor Radiometer

020.30.35.00.00-0004_REQ_Antenna_Time_an d_Frequency_Technical_Requirements

Final Audit Report

2024-08-22

Created:	2024-08-16
By:	Pieter Kotzé (pkotze@nrao.edu)
Status:	Signed
Transaction ID:	CBJCHBCAABAAQZZtsVw1rsAT3STN5k_Z9uexVe2ErkmZ

"020.30.35.00.00-0004_REQ_Antenna_Time_and_Frequency_T echnical_Requirements" History

- Document created by Pieter Kotzé (pkotze@nrao.edu) 2024-08-16 - 10:10:43 PM GMT- IP address: 208.77.77.75
- Document emailed to bshillue@nrao.edu for signature 2024-08-16 - 10:11:47 PM GMT
- Email viewed by bshillue@nrao.edu 2024-08-19 - 2:24:53 PM GMT- IP address: 192.131.232.128
- Signer bshillue@nrao.edu entered name at signing as B. Shillue 2024-08-19 - 2:25:22 PM GMT- IP address: 192.131.232.128
- Document e-signed by B. Shillue (bshillue@nrao.edu) Signature Date: 2024-08-19 - 2:25:24 PM GMT - Time Source: server- IP address: 192.131.232.128
- Document emailed to Pieter Kotzé (pkotze@nrao.edu) for signature 2024-08-19 - 2:25:26 PM GMT
- Email viewed by Pieter Kotzé (pkotze@nrao.edu) 2024-08-19 - 6:53:27 PM GMT- IP address: 174.56.85.49
- Document e-signed by Pieter Kotzé (pkotze@nrao.edu) Signature Date: 2024-08-19 - 6:55:22 PM GMT - Time Source: server- IP address: 174.56.85.49
- Document emailed to Rob Selina (rselina@nrao.edu) for signature 2024-08-19 - 6:55:23 PM GMT
- Email viewed by Rob Selina (rselina@nrao.edu) 2024-08-19 - 6:58:04 PM GMT- IP address: 192.92.119.128

- Document e-signed by Rob Selina (rselina@nrao.edu) Signature Date: 2024-08-22 - 3:00:45 PM GMT - Time Source: server- IP address: 66.173.52.81
- Document emailed to Willem Esterhuyse (westerhu@nrao.edu) for signature 2024-08-22 3:00:47 PM GMT
- Email viewed by Willem Esterhuyse (westerhu@nrao.edu) 2024-08-22 - 3:10:28 PM GMT- IP address: 73.31.51.29
- Document e-signed by Willem Esterhuyse (westerhu@nrao.edu) Signature Date: 2024-08-22 - 3:10:42 PM GMT - Time Source: server- IP address: 73.31.51.29

Agreement completed. 2024-08-22 - 3:10:42 PM GMT

