

ngVLA Antenna Time and Frequency Requirements

020.30.35.00.00-0004-REQ Status: **RELEASED**

REPARED BY ORGANIZATION		DATE
B. Shillue, J. Muehlberg	Central Development Laboratory,	2022-03-31
	NRAO	

APPROVALS	ORGANIZATION	SIGNATURES
B. Shillue, CSP & Timing IPT Lead	Central Development Lab, NRAO	BIU SHIUHE Bill Shillue (Apr 5, 2022 12:20 EDT)
T. Kusel, System Engineer	ngVLA Project Office	Thomas Kusel Thomas Kusel (Apr 5, 2022 13:22 EDT)
R. Selina, Project Engineer	ngVLA Project Office	R Selina
W. Esterhuyse, Antenna Project Manager	ngVLA Project Office	\$11 Ar

RELEASED BY	ORGANIZATION	SIGNATURE
W. Esterhuyse, Antenna Project Manager		North

Change Record

Version	Date	Author	Affected Section(s)	Reason
I	2021-10-27	B. Shillue	All	Initial Draft
2	2022-03-25	B. Shillue	All	Incorporated comments from formal internal review.
3	2022-03-28	J. Muehlberg	All	Review and revisions.
А	2022-04-04	A. Lear	All	Formatting, minor copy edits. Prepared PDF for signatures and release.

Table of Contents

1	Introduction	. 5
1.1	Purpose	5
1.2	Scope	5
2	Related Documents and Drawings	. 6
2.1	Applicable Documents	
2.2	Applicable Interface Control Documents	
2.3	Reference Documents	
3	Overview of Subsystem Requirements	. 7
3.1	Document Outline	7
3.2	Subsystem General Description	
3.3	Subsystem Boundary and External Interfaces	7
3.4	Key Requirements Summary	8
4	Requirements Management	. 9
4.1	Requirements Definitions	
4.2	Requirements Flow Down	9
4.3	Verb Convention	10
5	Assumptions	10
6	Environmental Conditions	11
6.1	Survival Conditions	11
6.2	Transportation Conditions	
6.3	Storage Conditions	12
6.4	Site Elevation	12
6.5	Environmental Protection Requirements	
6.5.I	Seismic	
6.5.2	Lightning, Dust, Fauna, Rain/Water Infiltration and Corrosion Protection	
6.6	Precision Operating Conditions (POC)	
6.7	Normal Operating Conditions (NOC)	
6.8	Limits to Operating Conditions (LOC)	
7	Subsystem Requirements	
7.1	Frequency	
7.2	Amplitude	
7.3	Phase	
7.4	Timing	
7.5	Modes	
7.6	Spurious/RFI	
7.6.1 7.6.2	Signal Path Spurious Spurious RFI Emission	
7.0.2 7.7	Monitor and Control	
7.7 7.8	Lifecycle	
7.8 7.9	Configuration	
7.10	EMC/Immunity	
7.11	Reliability, Availability, and Maintainability	
7.12	Design Requirements	
7.12.1	• 1	

7.12.2	Power and Ground	26
7.12.3	Electrical Wiring, Cables, Connectors	
7.12.4	•	
8	Safety	
8.1	Safety Requirements	
9	Interface Requirements	
9.1	Interface to IRD	
9.2	Interface to PSU	
9.3	Interface to FED	
9.4	Interface to WVR	
9.5	Interface to BMR	32
9.6	Interface to AFD	32
9.7	Interface to EEC	32
9.8	Interface to HIL	33
9.9	Interface to RTD	33
10	Technical Metrics	33
10.1	Technical Performance Measures	33
11	Verification	34
11.1	Environmental Testing	
11.2	Subsystem Verification Table	
12	Appendix	
12.1	Abbreviations and Acronyms	

I Introduction

I.I Purpose

This document presents the complete set of Level 2 subsystem requirements that should guide the design and development of the Antenna Time and Frequency (ATF) subsystem. Requirements described in this document are derived from applicable ngVLA System Requirements and System-Level Specification documents as listed in the Applicable Documents table. The overall requirements hierarchy and management strategy are outlined in [AD01] and [AD02].

The content of these requirements is at the subsystem level, conforming to the system architecture [AD06], but aims to be implementation agnostic within the subsystem boundaries. Some assumptions about the subsystem may be given, but only to the degree necessary to unambiguously define the subsystem requirements.

I.2 Scope

The scope of this document is the Antenna Time and Frequency (ATF) subsystem, as delivered for ngVLA integration. This includes the following:

- Assumptions upon which the requirements are based
- Definition of environmental requirements to be used ass applicable conditions in the definition of the requirements
- A complete set of requirements for the subsystem needed for the development, operation and maintenance of the subsystem, including interface requirements that are derived from the applicable list of ICDs.
- Nonfunctional requirements unique to this subsystem (e.g., safety, quality, reliability, maintainability).
- List of Interface Requirements (I/F) and link to Interface Control Documents necessary to integrate with other Systems and Subsystems.
- Numbering of all requirement and establishment of traceability to higher level requirements.
- Technical Performance Measures (TPMs) at the subsystem level, which support the Measures of Performance (MOPs) at the system level.
- Requirements specified for the complete lifecycle of the subsystem, including any requirements that are applicable for operations, maintenance, decommissioning, and disposal.

2 Related Documents and Drawings

2.1 Applicable Documents

The following documents apply to this Requirements Specification to the extent specified. In the event of a conflict between the documents referenced herein and the content of this Requirements Specification, the content of the *highest*-level specification (in the requirements flow-down) shall be considered the superseding requirement for design elaboration and verification.

Ref. No.	Document Title	Rev./Doc. No.
AD01	ngVLA Systems Engineering Management Plan	020.10.00.00.00-0001-PLA
AD02	ngVLA Requirements Management Plan	020.10.15.00.00-0001-PLA
AD03	ngVLA System Requirements	020.10.15.10.00-0003-REQ
AD04	LI System Environmental Specifications	020.10.15.10.00-0001-SPE
AD05	LI System EMI/RFI Requirements	020.10.15.10.00-0002-REQ
AD06	System-Level Architecture Model	020.10.20.00.00-0002-DWG
AD07	LI Safety Specification	020.80.00.00.00-0001-REQ
AD08	LI Security Specification	020.80.00.00.00-0003-REQ
AD09	ngVLA System Electronics Specifications	020.10.15.10.00-0008-REQ
AD10	Calibration Requirements	020.22.00.00.00-0001-REQ
ADII	System Technical Budgets	020.10.25.00.00-0002-DSN

2.2 Applicable Interface Control Documents

Ref. No.	Document Title	Rev./Doc. No.
AD20	Interface Control Document Between: Antenna Electronics	020.10.40.05.00-0005
	Integrated Receiver and Downconverters (IRD) and Antenna	
	Time and Frequency (ATF)	
AD21	Interface Control Document Between: Antenna Electronics DC	020.10.40.05.00-0059
	Power Supply (PSU) and Antenna Time and Frequency (ATF)	
AD22	Interface Control Document Between: Front End (FED) and	020.10.40.05.00-0016
	Antenna Time and Frequency (ATF)	
AD23	Interface Control Document Between: Water Vapor Radiometer	020.10.40.05.00-0028
	(WVR) and Antenna Time and Frequency (ATF)	
AD24	Interface Control Document Between Antenna Electronics: Bins,	020.10.40.05.00-0040
	Modules, Racks (BMR) and Antenna Time and Frequency	
AD25	Interface Control Document Between Antenna Electronics:	020.10.40.05.00-0041
	Antenna Fiber Distribution (AFD) and Antenna Time and	
	Frequency (ATF)	
AD26	Interface Control Document Between Antenna Time and	020.10.40.05.00-0070
	Frequency (ATF) and Antenna Electronics Environmental Control	
	System (EEC)	
AD27	Interface Control Document Between: Antenna Electronics	020.10.40.05.00-0078
	Monitor and Control Hardware Interface Layer (HIL) and	
	Antenna Time and Frequency (ATF)	
AD28	Interface Control Document Between: LO Reference and Timing	020.10.40.05.00-0125
	– Distribution (RTD) and Antenna Time and Frequency (ATF)	

<i>Title</i> : Antenna Time and Frequency Technical Requirements	Owner: Shillue	Date : 2022-04-04
NRAO Doc. # : 020.30.35.00.00-0004-REQ		Version: A

2.3 Reference Documents

The following documents are referenced within this text or provide supporting context:

Ref. No.	Document Title	Rev./Doc. No.
RD01	Science Requirements	020.10.15.05.00-0001-REQ
RD02	ANSI Z136 Standards for Implementing a Safe Laser	ANSI Z136.1 through .9
	Program	_
RD03	Safety of Laser Products – Part 1: Equipment Classification	IEC 60825-1:2014
	and Requirements	
RD04	Timing Requirements & Considerations	Draft memo

3 Overview of Subsystem Requirements

3.1 Document Outline

This document presents the technical requirements for the Antenna Time and Frequency subsystem. These parameters determine the overall performance of the subsystem and the functional requirements necessary to enable its operation and maintenance.

The Level 2 Subsystem Requirements, along with detailed explanatory notes, are found in Section 7. The notes contain elaborations regarding the meaning, intent, and scope of the requirements. These notes form an important part of the definition of the requirement and should guide the verification procedures.

In many cases, the notes contain an explanation or an analysis of how the numeric values of requirements were derived. Where numbers have a degree of ambiguity or are insufficiently substantiated, this is also documented in the notes. In this way, the trade-space available is apparent to scientists and engineers who will guide the evolution of the ngVLA concept.

In certain cases parameters are simply noted with a TBD or TBC value. The goal in such cases is to identify parameters that will require definition in future releases of the Antenna Time and Frequency Subsystem Requirements as the associated technical issues are understood.

Section 11 identifies performance metrics that will be monitored throughout the conceptual design phase. These are metrics to assist in the trade-off analysis of various concepts, should tensions be identified between requirements.

3.2 Subsystem General Description

The Antenna Time and Frequency Subsystem compromises a set of modules that perform a function of hardware timekeeping: generation and routing of an electronic signal, pulse, or digital rising or falling edge from a common reference input to another module or subsystem. These can include for instance local oscillators or digital clocks.

3.3 Subsystem Boundary and External Interfaces

Figure I (on the next page) shows the Antenna Time and Frequency subsystem boundaries, in the context of other systems on the antenna. External systems are shown in boxes with their Configuration Item (CI) number, in accordance with the Product Breakdown Structure (PBS) generated from the system

<i>Title</i> : Antenna Time and Frequency Technical Requirements	Owner: Shillue	Date : 2022-04-04
NRAO Doc. # : 020.30.35.00.00-0004-REQ		Version: A

architecture model. The ICD document number corresponding to each interface is displayed above the interconnect, where it exists.

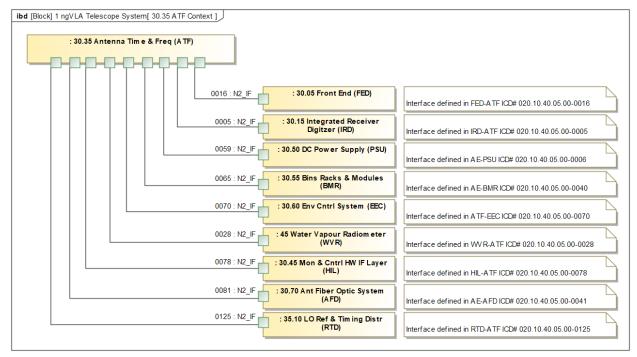


Figure I: Antenna Time and Frequency subsystem product breakdown, interfaces with other antenna subsystems.

3.4 Key Requirements Summary

Parameter	Summary of Requirement	Reference Requirements
LO Phase Noise	ATFI240	SYS5001, SYS1503
LO Phase Drift	ATF1250	SYS5001, SYS1504, SYS1505
Spurious – Narrowband tones	ATFI500	SYS2104
Mean Time Between Failures	ATF2310	SYS2610, [AD11]

Date: 2022-04-04

NRAO Doc. #: 020.30.35.00.00-0004-REQ

4 Requirements Management

4.1 Requirements Definitions

Consistent with the Requirements Management Plan [AD02], the following definitions of requirement "levels" are used in the ngVLA program. The requirements in this document are at the L2 subsystem level.

Requirement Level	Definition
LO	User requirements expressed in terms applicable to their needs or use cases (Science Requirements or Stakeholder Requirements)
LI	Requirements expressed in technical functional or performance terms, but still implementation agnostic (System Level Requirements)
L2	Requirements that define a specification for an element of the system, presuming a system architecture (Subsystem Requirements)

4.2 Requirements Flow Down

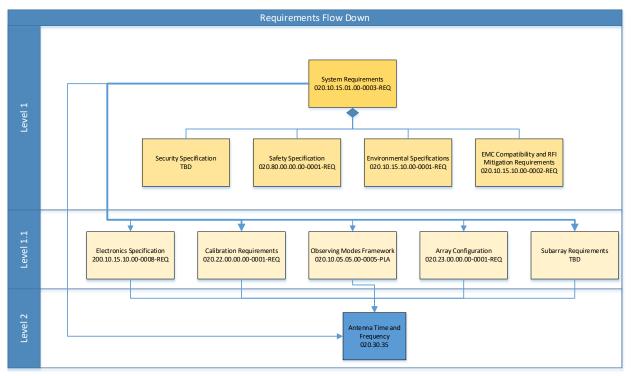


Figure 2 – Requirements flow-down to the Antenna Time and Frequency Subsystem Requirements.

Individual subsystem specifications (Level 2) flow from the Level I requirements, and may not always be directly attributable to a single system requirement. For example, phase drift specifications at the system level may be apportioned to multiple subsystems, or a subsystem spec may be in support of multiple higher-level requirements. Completeness of the Level 2 requirements is assessed at the requirements review of each subsystem.

While this is a top-down design process, the process is still iterative rather than a "waterfall" or linear process. The feasibility and cost of requirements implementation lead to trade-offs that feedback to higher-level requirements. The end goal is to build the most generally capable system that will support the Key Science Goals within the programmatic constraints of cost and schedule.

Maintaining enumerated and traceable science requirements, system requirements, and subsystem specifications ensures this trade-off process is complete and well understood by the project team. The effect of a change in a subsystem specification can be analyzed at the system level, and thereafter the impact on a specific scientific program can be ascertained.

4.3 Verb Convention

This document uses "shall" to denote a requirement. The verbs "should" and "must" denote desired but not strictly required parameters. "Will" denotes a future happening. Desired but not required features are noted as "desirable" or "goals."

5 Assumptions

The following assumptions are made in the definition of these subsystem requirements:

- Subsystem requirements apply to performance before any operational calibration corrections are applied unless explicitly stated otherwise.
- Hardware requirements apply to a properly functioning system under the precision operating environmental conditions unless explicitly stated otherwise.
- Hardware requirements assume that all system parts that would normally be in place during observations are working within their respective specifications (e.g., HVAC, RTP system) unless explicitly stated otherwise.
- Notwithstanding the desire that these requirements be implementation agnostic, a set of subsystems is assumed that interfaces with the ATF subsystem on the antenna. These are defined and an overview of the interface requirements included in Section 9.
- A receiver and water vapor radiometer are located on the elevated moving structure of the antenna
- A digital backend is located in the antenna pedestal

6 Environmental Conditions

The Antenna Time and Frequency subsystem components will be located in or on the Antenna Stations. The ATF equipment can be located either: inside the antenna pedestal, or on the elevated (and moving) structure of the antenna.

Local oscillators need to be provided to the receiver downconverters, close to the secondary focus of the antenna. Therefore, the applicable environmental conditions for a given subsystem, assembly, line-replaceable unit, or shop replaceable unit depends on its location and local conditions.

All ATF equipment shall be installed in environmentally controlled facilities or racks. As such, the normal operating conditions are defined by the applicable ICD:

- [AD24] 020.10.40.05.00-0040 (Interface 0065): Interface Control Document Between Antenna Electronics: Bins, Modules, Racks (BMR) *and* Antenna Time and Frequency
- [AD26] 020.10.40.05.00-0070: Interface Control Document Between Antenna Time and Frequency (ATF) and Antenna Electronics Environmental Control System (EEC)

6.1 Survival Conditions

The ATF subsystem when installed on the antenna shall survive without sustaining residual damage the following conditions:

Parameter	Req. #	Value	Traceability
Temperature	ATF0110	–30 C ≤ T ≤ +50 C	ENV0342

All ATF equipment is expected to be housed in a temperature-controlled environment. However, in case of power outage, the survival temperature range is applicable.

Parameter	Req. #	Value	Traceability
Packaging for	ATF0160	All ATF LRUs shall be transported using ESD,	ETR0503
Transportation		thermal and vibration protective packaging in	ENV0381
-		accordance with the System Environmental and	ENV0382
		Electronics Specifications	ENV0531
Solar Thermal	ATF0170	Exposed to full sun, 1200W/m ² (within transport	ENV0381
Load		cases)	
Transportation	ATF0180	$-30 \text{ C} \le \text{T} \le +60 \text{ C}$ (within transport cases)	ENV0382
Temperature			
General	ATF0190	Vibration on all three axes, for 60 minutes.	ENV0531
Vibration			
Mechanical	ATF0200	LRUs packaged for shipping shall survive a	ENV0582
Shock		mechanical shock level defined in [AD04]. In case of	
		shop replaceable units (SRU), these shall be designed	
		to withstand the drop requirement when they are	
		packaged for shipment within the LRU.	

6.2 Transportation Conditions

<i>Title</i> : Antenna Time and Frequency Technical Requirements	Owner: Shillue	Date : 2022-04-04
NRAO Doc. # : 020.30.35.00.00-0004-REQ		Version: A

The ATF subsystem is expected to consist of some products that are LRUs and some that are SRUs. The former, for instance, could be a module located in a rack in the antenna pedestal. The latter would be an LO SRU packaged into the Front End enclosure which is an LRU. The drop test is applicable to the LRU with testing conducted on the LRU in its shipping container.

6.3 Storage Conditions

Parameter	Req. #	Value	Traceability
Packaging for	ATF0210	All ATF LRUs shall be stored using ESD and thermal	ETR0503
Storage		protective packaging in accordance with the System	ENV0372
		Environmental and Electronics Specifications	ENV0373

6.4 Site Elevation

Parameter	Req. #	Value	Traceability
Altitude Range	ATF0220	All ATF elements shall be designed for operation and	ENV0351,
		survival at altitudes ranging from sea level to 2500 m.	[AD26]

Equipment using air flow as a means of temperature regulation shall account for reduced air pressure at 2500 m.

6.5 Environmental Protection Requirements

6.5.1 Seismic

Parameter	Req. #	Value	Traceability
Seismic	ATF0230	The ATF subsystem shall be designed to withstand a	ENV0521
Protection		low-probability earthquake with up to 0.2g peak acceleration in either the vertical or the horizontal axis. Units shall not sustain residual damage under these conditions while in the installed and operational state.	

6.5.2 Lightning, Dust, Fauna, Rain/Water Infiltration and Corrosion Protection

Parameter	Req. #	Value	Traceability
Equipment Protection	ATF0240	Protection against lightning, dust, fauna, solar radiation, rain/water infiltration and corrosion shall be provided by the environmentally controlled facilities or racks in which the ATF elements are installed, as defined by the applicable ICD [AD24], [AD26]. No ATF element shall be installed outside these facilities or racks.	ENV0541, ENV0542, ENV0571, ENV0591

6.6 Precision Operating Conditions (POC)

The ATF subsystem shall have precision performance as defined in [AD04] under the following conditions:

Parameter	Req. #	Value	Traceability
Temperature POC	ATF0320	+17.5 C ≤ T ≤ +22.5 C	ENV0313, [AD22], [AD26]
Temperature Rate of Change POC	ATF0330	< 0.1 °C per hour	ENV0314, [AD22], [AD26]

[AD22] and [AD26] specify in further detail the temperature and humidity ranges which will surround the ATF subsystem LRUs and subassemblies during precision operating conditions.

6.7 Normal Operating Conditions (NOC)

The ATF subsystem shall have normal performance as defined in [AD04] under the following outside ambient conditions:

Parameter	Req. #	Value	Traceability
Temperature NOC	ATF0390	+15 C ≤ T ≤ +25 C	ENV0323, [AD22],
			[AD26]
Temperature Rate of Change NOC	ATF0400	< 0.25 °C per hour	ENV0324, [AD22],
			[AD26]

[AD22] and [AD26] specify in further detail the temperature and humidity ranges which will surround the ATF subsystem LRUs and subassemblies during normal operating conditions.

6.8 Limits to Operating Conditions (LOC)

The ATF subsystem shall be able to operate for extended periods without sustaining residual damage under the following outside ambient conditions:

Parameter	Req. #	Value	Traceability
Temperature LOC	ATF0410	+5 C ≤ T ≤ +30 C	ENV0313, [AD22],
			[AD26]
Temperature Rate of Change LOC	ATF0420	< 0.5 °C per minute	ENV0314, [AD22],
			[AD26]

[AD22] and [AD26] specify in further detail the temperature and humidity ranges which will surround the ATF subsystem LRUs and subassemblies during precision operating conditions.

7 Subsystem Requirements

7.1 Frequency

Parameter	Req. #	Value	Traceability
LO Frequency	ATFI200	LO frequencies shall be provided to support	SYS0801, SYS0803,
Ranges		downconversion (except instances of direct	SYS0804, SYS0805,
		conversion). These shall fall in or near to the range	SYS0806, SYS0903,
		of sky frequencies required for ngVLA: 1.2–8 GHz,	SYS0905
		8–50 GHz, and 70–116 GHz. Fixed or tunable LOs	
		must allow for continuous frequency coverage	
		across these spans. Additionally, the design plan	
		must allow for simultaneously multiple LOs in a	
		given receiver band so that the full available	
		instantaneous downstream processing bandwidth	
		can be achieved, and so that discontinuous	
		portions of a band may be selected.	
LO Frequency	ATFI205	Given the overall frequency ranges covered by	[AD20], SYS0801,
Table		ngVLA, the detailed design of the Front End	SYS0803, SYS0804,
		receiver and downconverter spanning this range	SYS0805, SYS0806,
		will determine the specific LO tunings for each	SYS0903, SYS0905
		downconverter (IRD module) and receiver band.	
		A tuning plan, or table, with required amplitudes	
		and frequencies will be specified in the ICD	
		between the ATF and the IRD.	
LO Frequency	ATFI210	Nominal LO frequencies must be capable of	SYS2105, SYS0603,
Offsets		frequency offsetting on a per antenna basis.	SYS2217
Tuning	ATFI220	The LO shall be tunable if necessary to cover the	SYS0906, SYS0907,
Resolution		required full frequency spans. If tuning is required,	
		the resolution shall be 250 MHz or less.	
Switching	ATFI225	Frequency switching between or within a band	SYS0908
Speed		shall be accomplished in < 10 s. The switching time	
		is defined as time to reach full performance.	

The LO Frequency Table: arises from the design of the receiver and downconverters, and thus the specific frequencies and number of frequencies required to support ngVLA are detailed in the ICD between ATF and IRD [AD20].

A representation of the working version of the frequency table (which assumes SADC implementation with IRD) is shown in Table I (on the next page).

NRAO Doc. #: 020.30.35.00.00-0004-REQ

Version:	А

		RF		LO	
RF Band	Module	start (GHz)	stop (GHz)	harmonic	(GHz)
2	а	3.5	12.3	2	5.8
	b			4	11.6
3	а	12.3	20.5	5	14.5
	b			7	20.3
4	а	20.5	34	8	23.2
	b			10	29
	С			12	34.8
5	а	30.5	50.5	11	31.9
	b			13	37.7
	С			15	43.5
	d			17	49.3
6	а	70	116	25	72.5
	b			27	78.3
	С			29	84.1
	d			31	89.9
	е			33	95.7
	f			35	101.5
	g			37	107.3
	h			39	113.1

 Table I: LO Frequency Table.

LO Frequency Offsets: arise from the design of the receiver and downconverters, and also out of certain system considerations. The offset requirements are part of the ICD between ATF and IRD [AD20]. A potential implementation is as follows:

Each antenna station will incorporate a fixed frequency offset that is a multiple of a small fixed offset. The current design value of this fundamental offset is 15.68 kHz. Thus, an antenna will have its LO offset by an amount of m*15.68 kHz, where m is an index representing the antenna station and can take on values m = -131, -130, ..., -1, 0, 1, ... 130, 131 for an overall offset range of +/-131*15.68 kHz equals +/- 2.054 MHz. Similarly, the digitizer clock shall offset by the same amount.

Since bands 2–6 all have more than one LO, it is noted that the fixed offset attached to each LO in a particular band results in a different ratio between the offset and the LO frequency. This has implications for the LO design and is not a requirement but rather a system design choice subject to review and/or change.

Also, it is noted that the incremental assignment of offsets to stations applies only within a single science subarray. Thus, only when all antennas are in a single subarray would the full +/- 2.054 MHz tuning range be used. This, and the fact that subarrays can be re-assigned amongst sets of antenna stations, means that the fixed offset to applicable to a particular station must be tunable to any of the values for m = -131, -130, ..., -1, 0, 1, ... 130, 131.

<i>Title</i> : Antenna Time and Frequency Technical Requirements	Owner: Shillue	Date : 2022-04-04
NRAO Doc. # : 020.30.35.00.00-0004-REQ	•	Version: A

7.2 Amplitude

Parameter	Req. #	Value	Traceability
LO Amplitude	ATFI230	Given the overall frequency ranges covered by ngVLA,	[AD20],
		the detailed design of the Front End receiver and	ŠYSIOĪI,
		downconverter spanning this range will determine the	SYSI012,
		specific LO levels required needed for each	SYSI013,
		downconverter (IRD module) and receiver band. A	SYS1033,
		tuning plan, or table, with required amplitudes and	SYS1034,
		frequencies will be specified in the ICD between the	SYS1035
		ATF and the IRD.	
LO Amplitude	ATFI235	LO amplitude change shall not contribute to the	SYS1601
Stability		receive signal path amplitude change so as to cause	SYS4601
-		fractional gain stability to exceed:	SYS4604
		> Ie-3 at 60 s (goal Ie-4)	SYS1603
		> 4e-3 at 200 s (1 MHz bandwidth)*	SYS4603
		> 8e-3 at 200 s (1 MHz bandwidth)**	SYS4902
		> Ie-2 for 4° change in elevation (8 GHz)***	
		> Ie-2 per deg K	
		*Precision Operating Conditions (see Sec 6.6, [AD04])	
		**Normal Operating Conditions (see Sec 6.7, [AD04])	
		***scaled with frequency	

LO Amplitude: Final requirements will be in the ICD between IRD and ATF [AD20]. A preliminary version of this ICD has the following placeholders, which are subject to change:

Band 2 LO Power	The Band 2 LO nominal power shall be +7 dBm (CW).
Band 3 LO Power	The Band 3 LO nominal power shall be +7 dBm (CW).
Band 4 LO Power	The Band 4 LO nominal power shall be +3 dBm (CW).
Band 5 LO Power	The Band 5 LO nominal power shall be +13 dBm (CW).
Band 6 LO Power	The Band 6 LO nominal power shall be +13 dBm (CW).

LO Amplitude Stability: The levels appearing in the table above refer to the maximum acceptable level for gain (or power) level change in linear units, of the *receive chain signal path*. The specific acceptable level for LO amplitude changes versus time, temperature, or tilt depend on the LO design and its interface with the integrated receiver modules. *This is a derived requirement that will be confirmed (TBC) in the ICD between ATF and IRD [AD20].*

- The sixty second accuracy of Ie-3 is equivalent to .004 dB.
- The sixty second goal accuracy of 1e-4 is equivalent to .0004 dB.
- The 200s accuracy of 4e-3 is equivalent to .017 dB.

Assuming that the IRD buffer amplifiers are designed to operate in compression so that 90% of incident fluctuations are suppressed, then the LO amplitude stability requirement would be:

Local Oscillator Stability		Linear gain	dB
60 s	Required	le-2	0.04
60 s	Goal	le-3	0.004
200 s	Required, Precision Conditions	4e-2	0.17
200 s	Required, Normal Conditions	8e-2	0.36
Per deg K	Required	le-l	0.45
Per 4° change in elevation	Required (at 8 GHz), scaling with frequency	le-l	0.45

7.3 Phase

Parameter	Req. #	Value	Traceability
LO Phase Noise	ATFI240	< 76 fs integrated from I Hz to maximum IF	SYS5001, SYS1503,
		frequency offset	CAL0314
		Goal is < 50 fs	
LO Phase Drift	ATFI250	< 42 fs at 300 s (linear term removed)	SYS5001, SYS1504,
		< 250 fs (absolute)	SYS1505
Digitizer Clock	ATFI260	< 76 fs integrated from I Hz to maximum IF	SYS5001, SYS1503,
Phase Noise		frequency offset	CAL0314
		Goal is < 50 fs	
Digitizer Clock	ATFI270	< 42 fs at 300 s (linear term removed)	SYS5001, SYS1504,
Phase Drift		< 250 fs (absolute)	SYS1505
Return to Phase	ATFI280	Any derived LO or timing signal shall return	SYS0602
		to phase upon change in frequency from F_1 to	
		F ₂ to F ₁	

7.4 Timing

Traceability
ive difference between local antenna SYS2002, SYS2003, the system clock shall not exceed $\pm 5 \ \mu s$. SYS0404, [RD04] on a time shall be stable relative to the O reference to 2 ns.
ł ei

System requirement for Temporal Accuracy (SYS2002): Data Product timestamps must be referred to an absolute time standard (e.g., GPS or TAI) with an error of less than 10 ns (goal of 1 ns).

System requirement for Timestamp Corrections (SYS2003): Timestamps may be applied or corrected retroactively (i.e., it is not necessary for it to be known in real time.) Any timestamp corrections shall be made through a metadata table that is incorporated into the data model.

Taken together SYS2002 and SYS2003 imply the need for accurate central timing, and the need for—at least—an accurate model of the antenna timing.

The requirement for accurate array timing impacts the Central clocks, the distribution of the clocks to the CSP, and the distribution of the clocks to the antennas. For these (Antenna Time and Frequency) requirements we are concerned only with the latter.

The antenna timing is constrained by at least three functional needs:

- Antenna tracking: Timing accuracy <= 660 us
- Switched Power: Timing accuracy <=50 us
- Fringe search: Timing accuracy <=50 us

These three needs, inclusive of some design margin, lead to a requirement for the timing of the antenna system to not deviate from the system clock by more than about 5 μ s. i.e., the relative difference between local antenna time and the system clock **shall not exceed** ±5 μ s. This requirement must be met by the hardware alone, before the application of time corrections (online or offline) derived from astronomical calibration. We note that this is within the capabilities of the IEEE 1588 Precision Time Protocol.

Additionally, there is a need for accurate timing by either model, measurement, or active correction to at least one reference antenna in any given subarray. The accuracy of this timing for support of data timestamping **shall be less than 2 ns**.

Parameter	Req. #	Value	Traceability
Standby Mode	ATF1400	A low power standby mode shall be available	SYS0010, SYS0011,
-		for all ATF modules. Monitor and Control	ETR0809, ETR0810
		shall remain operational in this mode.	
Automatic	ATFI4I0	ATF modules shall automatically boot into	SYS0011, SYS3114,
Initialization		standby mode on power-up, absent any	ETR0811
		command from M&C.	
Operating	ATF1420	Any functional operating mode can be reached	SYS0010
Modes		by command from Standby Mode.	

7.5 Modes

7.6 Spurious/RFI

7.6.I	Signal Path Spurious	
-------	----------------------	--

Parameter	Req. #	Value	Traceability
Spurious Narrowband Tones	ATFI500	Spurious narrowband tones introduced in the LO spectrum may be expected to pass directly to the receive path. These tones shall contribute no more than -43 dB/MHz relative to the system noise level in the IF receive path. Derived requirement (see below) Within 3.5 GHz of carrier < -103 dBc Beyond 3.5 GHz from carrier < -48 dBc TBC	[AD20], SYS2104

Note that the specific acceptable level for spurious with respect to the LO power level LO will be detailed in the ICD between ATF and IRD [AD20].

Derivation of Spurious Requirement:

- Assume that the LO power is + 10 dBm.
- Further assume that the receive signal path noise floor is low ~ -80 dBm/Mhz. The requirement sets the spurious at -43 dB relative to this level, or -123 dBm/MHz.

<i>Title</i> : Antenna Time and Frequency Technical Requirements	Owner: Shillue	Date : 2022-04-04
NRAO Doc. # : 020.30.35.00.00-0004-REQ		Version: A

If the conversion efficiency of spurious inputs at the LO port were about the same as inputs at the RF port, then we would need to suppress those spurious inputs by 10 + 123 = 133 dBc. Direct port-to-port leakage of the tone is likely to be less significant than downconversion, and in any case the spurs we are currently concerned with lie well outside the IF baseband frequency range, and will be significantly attenuated by the baseband signal path if not downconverted first.

This downconverted LO path can be mitigated by the use of balanced mixers, anti-alias filtering, and the use of saturated amplification in the receiver LO path. These details may be different depending on the LO frequency and receiver or downconverter band.

For instance, the anti-aliasing filters will suppress signals more than ~3.5 GHz away from the primary LO by at least **55 dB** (IRD062x). Second, the mixers will likely all be balanced, which should suppress LO noise and inputs by another **15 dB** or so. Finally, LO buffer amps inside the IRD modules will likely be run in compression, which would tend to suppress weak signals which are present on top of the primary LO. We can conjecture an additional 15 dB (TBC) for this effect. So, with these effects we can relax our spurious LO tone suppression spec (for signal beyond 3.5 GHz) to 133–55–15–15 = **-48 dBc**. Or, for tones close (within 3.5 GHz) to the carrier **-103 dB**c.

Parameter	Req. #	Value	Traceability
Spurious Signal Level Emission	ATF1600	Spurious signals generated by the system shall not exceed the equivalent isotropic radiated power limits specified in [AD05]. See Table 3.	SYS2104, EMC0310
Spurious Emission impacting IRD	ATF1605	Spurious signals generated by the system shall not exceed the equivalent isotropic radiated power limits specified in [AD05]. See Table 3 and detailed note "Spurious Emission Impacting IRD, ATF1605" below.	SYS2104, EMC0310, [AD20]
Emission Verification Frequencies	ATF1610	Spurious signal emission levels shall be verified by test over a minimum range of I GHz up to 12 GHz. Modules or devices that may contain frequency content above 12 GHz shall be tested at least up to 50 GHz.	SYS2104, EMC0311
Low Frequency Emission	ATF1620	Spurious signal emission levels shall be quantified by test over an extended frequency range of 5 MHz to I GHz. While there is no emission threshold within this range, this information shall be collected to inform future system expansion.	SYS2104, SYS5602, EMC0312
RFI suppressing housings	ATFI630	RFI Suppression housings shall be used to contain and suppress spurious emissions, in order to meet the requirements derived from ATF1600 (see Table 3, column 6, for example).	[AD24]

7.6.2 Spurious RFI Emission

Spurious Emission ATF1600:

EMC0310 specifies spurious emission level versus frequency for spectral line and continuum emission. For Antenna LO and Timing these are both applicable but spectral line emission is likely to be the greater concern due to LO and digitizer harmonics, subharmonics, and spurious tones. Thus it is elaborated in the text below.

For reference the spectral line emission requirement from [AD05] is shown in Table 2 (reformatted). The columns reflecting 10m distance match [AD05] and would be pertinent for equipment located in the antenna pedestal. For equipment at the secondary focus (nearly co-located with the receiver, the numbers have been reworked to reflect lower acceptable limits (by 20 dB).

		spectral line 10m		spectral line 1m	
Freq	BW (kHz)	EIRP	dBm/Hz	EIRP	dBm/Hz
1	0.3	-129	-154	-149	-174
3	1	-115	-145	-135	-165
6	2	-106	-139	-126	-159
10	3	-100	-135	-120	-155
30	10	-84	-124	-104	-144
45	15	-78	-120	-98	-140
90	30	-67	-112	-87	-132

 Table 2: Spectral Line emission limits from [AD05].

For reference the spectral line emission requirement from [AD05] is shown in Table 3 (reformatted; on the next page).

We can then further make a list of the currently projected frequencies for LO and digitizer signals and tabulate the maximum permissible radiation levels, detailed below in Table 3. Note that the sixth column represents the permissible emission for equipment at the secondary focus enclosure after all design mitigations *including RFI suppressing housings*. Shielding levels that may be required to meet the limits detailed here will be included in the ICD with the Antenna Electronics Bins, Modules, and Racks work package [AD24].

NRAO Doc. #: 020.30.35.00.00-0004-REQ

		spectral		spectral	
LOs		line 10m		line 1m	
freq (GHz)	BW (kHz)	EIRP	dBm/kHz	EIRP	dBm/kHz
2.9	0.97	-116	-116	-136	-136
5.8	1.93	-106	-109	-126	-129
7.0	2.33	-104.5	-108	-124.5	-128
11.6	3.87	-99	-105	-119	-125
14.5	4.83	-96	-103	-116	-123
20.3	6.77	-92	-100	-112	-120
23.2	7.73	-89	-98	-109	-118
29.0	9.67	-85	-95	-105	-115
34.8	11.6	-82	-93	-102	-113
31.9	10.6	-83	-93	-103	-113
37.7	12.6	-81	-92	-101	-112
43.5	14.5	-79	-91	-99	-111
49.3	16.4	-77	-89	-97	-109
72.5	24.2	-71	-85	-91	-105
78.3	26.1	-70	-84	-90	-104
84.1	28.0	-69	-83	-89	-103
89.9	30.0	-67	-82	-87	-102
95.7	31.9	-66	-81	-86	-101
101.5	33.8	-64	-79	-84	-99
107.3	35.8	-62	-78	-82	-98
113.1	37.7	-61	-77	-81	-97

Table 3: Maximum permissible spectral line spurious emission levels for select LO and digitizer frequencies.

Note that the permissible limits are lower (i.e. more stringent) at the low end of the frequency range.

For frequencies below I GHz, such as the digitizer reference frequency, possibly PLL clocks and other timing signals, the ngVLA [AD05] does not expressly limit emissions. For frequencies below I GHz, we will consider the I GHz emission limit shown in the first line of Table 2 to be a goal.

Spurious Emission Impacting IRD, ATF1605:

Note that the levels shown in Table 3 are applicable as well to the spurious emission from LO modules that could couple to the input of the IRD modules. Meeting this requirement may not have the same mitigation as coupling to the receiver input because both the LO and the IRD modules are expected to be housed in the same RFI suppressing module. However, ATF1500 requires very low level of conducted spurious emission. The level for radiated spurious emission is expected to be lower of course than the conducted emission. However, depending on the final design of the IRD downconverters and the Antenna Time and Frequency LO design, it could be possible for harmonics, subharmonics, or other spurious to present RFI to one or more IRD bands. It is necessary to analyze all possible cases and limit emissions especially that fall close to the LO frequency of a band (within 3.5 GHz). All such requirements arising from the design shall be detailed in the ICD with IRD [AD20].

<i>Title</i> : Antenna Time and Frequency Technical Requirements	Owner: Shillue	Date : 2022-04-04
NRAO Doc. #: 020.30.35.00.00-0004-REQ		Version: A

7.7 Monitor and Control

Parameter	Req. #	Value	Traceability
Self-Monitoring	ATF1630	The ATF subsystem shall measure, report and monitor	SYS2601,
-		a set of parameters that allow for determination of its	SYS3101
		status and may help predict or respond to failures. This	
		shall include but not be limited to on/off status, power	
		levels, frequency lock status, and bias voltages.	
LRU Alerts	ATFI640	A subsystem alert shall be generated when an ATF	SYS3102
		LRU has an abnormal condition or failure.	
High-Cadence	ATF1650	The M&C interface shall be fast enough to support	SYS3105,
Monitoring		streaming of diagnostic data. This shall be applicable in	SYS2408
-		operational mode without affecting other performance	
		requirements.	
LRU Hot	ATF1660	ATF LRUs intended for field replacement shall be hot-	SYS3111
Swapping		swappable by design, and recover with minimal	
		intervention by maintenance and operations staff.	
Remote	ATFI670	Firmware in embedded processors and configuration	SYS3223,
Updates		data in FPGAs shall be updateable remotely, in-situ.	ETR0907
Automatic	ATF1680	The ATF subsystem shall be capable of reaching an	SYS3114
Configuration		operationally-ready Standby state after a full power	
on Restart		cycle without human intervention.	
Front End	ATFI690	The ATF subsystem shall include an engineering	SYS2407
Engineering		console to display status and aid in real-time problem	
Console		diagnosis.	
M&C	ATFI700	All DC powered LRUs and complex programmable	ETR0909
Commanded		devices shall be provided with a physical reset line	
Reset for DC		connected to a local M&C device to allow remote	
Powered		reset commands to be sent. This could be	
Devices		implemented as a ganged reset to all devices in an LRU	
		or as individual lines to each device (or group of	
		devices) as determined by the designer.	
M&C	ATFI7I0	All AC powered LRUs shall be connected to a	ETR0912
Commanded		remotely controllable Power Distribution Unit (PDU)	
Reset for AC		or similar device which can be remotely commanded	
Powered		via the M&C system to power cycle each individual	
Devices		device.	

With regard to the self-monitoring, alerts, and high cadence monitoring: these requirements may be satisfied by:

- an ATF LRU alone, in a module which has the onboard intelligence to report status and/or alarms
- by a combination of the ATF modules and the hardware interface layer as specified in [AD27]

<i>Title</i> : Antenna Time and Frequency Technical Requirements	Owner: Shillue	Date : 2022-04-04
NRAO Doc. # : 020.30.35.00.00-0004-REQ		Version: A

7.8 Lifecycle

Parameter	Req. #	Value	Traceability
Design Life	ATF1800	The integrated modules shall be designed to be operated	SYS2801,
-		and supported for a period of 30 years.	ETR0903
Lifecycle	ATF1810	The ATF design shall minimize its lifecycle cost for 30	SYS2802
Optimization		years of operation.	
Parts	ATF1820	Parts selection and procurement criteria shall include:	SYS2803,
Selection		a) Sustainability and environmental impact	SYS2805,
and		b) Adequate Supply of critical spares for array lifecycle	SYS2812,
Procurement		c) Risk mitigation against parts obsolesce and long-term	ETR0901,
Criteria		availability	ETR0902

Accounting for product development, integration, and array commissioning, it is reasonable to target a 30-year minimum overall lifetime.

Lifecycle costs include manufacturing, transportation, construction/assembly, operation, and decommissioning.

7.9 Configuration

The following table lists the configuration management requirements applicable to the ATF subsystem equipment.

Parameter	Req. #	Value	Traceability
Serial Numbers	ATF1900	Each LRU shall have both a visible and electronic serial number.	SYS3600
Version Control for Software and Firmware	ATF1910	All custom software and firmware delivered as part of the ATF subsystem shall be version controlled via a configuration management process.	SYS3602
Configuration Retrieval	ATF1920	Any configurable equipment shall retrieve its hardware configuration immediately after installation and power up.	SYS3603
Physical Tracking	ATF1930	Any hardware deliverable or equipment not connected to the M/C subsystem shall be equipped with a physical tracking label or device (bar code or RFID tag), to allow quick and unique identification.	ETR0404
Remote Identification	ATF1940	The ATF modules shall report the following information to the M&C system, to the extent applicable, upon request: 1) Module/Model Number 2) Serial Number 3) CID Number 4) Hardware Revision Level 5) Software Revision Level 6) Firmware Revision Level Note that the software and firmware revision codes together represent a configuration that is tracked under version control from ATF1910 and ATF1920.	SYS3600, ETR0403

<i>Title</i> : Antenna Time and Frequency Technical Requirements	Owner : Shillue	Date : 2022-04-04
NRAO Doc. # : 020.30.35.00.00-0004-REQ		Version: A

Parameter	Req. #	Value	Traceability
Documentation	ATF1950	Clear and complete documentation shall be delivered with the ATF LRUs and equipment, meeting project format and standards.	SYS6001– SYS6005

7.10 EMC/Immunity

ngVLA standards for Electromagnetic Compatibility and Immunity are developed and described in [AD03], [AD05], and [AD09].

Parameter	Req. #	Value	Traceability
Analog shielding	ATF2200	Analog electronics, especially those containing oscillators and amplifiers, shall be shielded so that emission limits can be met. Careful EMC design shall limit conducted emission between and among subsystems, including by power supply wiring or ground loops.	SYS2106, SYS2107, EMC0322
Digital shielding	ATF2210	All digital equipment shall be shielded and have its AC or DC power line and communication line(s) filtered at the chassis.	SYS2106, SYS2107, EMC0327
Commercial equipment	ATF2220	Any Commercial off-the-shelf (COTS) equipment shall conform to IEC product family standards for immunity standards, or to the generic standard IEC 61000 – Part 6: Generic Standards if no product family standard is given. Additionally, the equipment shall have a CE mark or FCC compliance ID.	SYS2016, EMC0401, EMC0402
Conducted Immunity, Testing	ATF2230	LRUs shall be designed and tested for immunity to conducted voltage and noise.	SYS2106, EMC0411–0412, EMC0421–0424, EMC0431–0432, EMC0451–0452, EMC0461–0462
Electrostatic Discharge, Testing	ATF2240	LRUs shall be designed for and tested to meet ESD discharge requirements.	SYS2106, EMC0471–0473, ETR0501, ETR0505, ETR0506
Hi-Speed Design	ATF2250	ATF modules incorporating high speed digital logic shall be designed for low emission, incorporate best EMC practices, and be subject to rigorous review.	SYS2016, ETR0714
ESD, Storage and Shipment	ATF2260	ESD sensitive components and modules shall use best practices for storage, shipment, and handling.	SYS3904, ETR0503

7.11 Reliability, Availability, and Maintainability

Parameter	Req. #	Value	Traceability
Reliability	ATF2300	A Reliability, Availability, Maintainability analysis shall	ETR0904,
Analysis		be performed and documented as a memo by each	SYS2402,
		designer at the LRU level to locate weak design	SYS2801,
		points and determine whether the design meets the	SYS2802,
		Maintenance and Reliability requirements. [AD09]	SYS2805
Mean Time	ATF2310	The ATF subsystem as a whole shall have a MTBF	SYS2610,
Between		and MTBM of 18,500 hours (2.11 years) or greater,	[ADII]
Failure/Mean		contributing 9% to the overall antenna electronics	
Time Between		budget. Here failures are considered in the same	
Maintenance		category as maintenance, any equipment status that	
		would require a human intervention to address.	
Array Element	ATF2330	The Array Elements shall have a Mean Time to	SYS2611
MTTR		Repair (MTTR) of less than 3 hours.	
Modularization	ATF2340	The system shall be modularized into Line	SYS2403
		Replaceable Units (LRUs) to facilitate site	
		maintenance.	
Spares Planning	ATF2350	Failure analysis shall be used in the planning of	SYS3204
		spares inventory. Factors considered shall include	
		the projected availability for spares, the time	
		required to repair the failure, and the viability of	
		critical vendors.	
Operations and	ATF2360	All procedures, test equipment, and test software	SYS3211
Maintenance:		shall be delivered to the Operations and	
Transfer of		Maintenance staff prior to full operations.	
Deliverables			
LRU	ATF2380	LRUs should be interchangeable with no on-site	SYS3232
Interchangeability		calibration, tuning or alignment.	
Identify Failures	ATF2390	All LRUs shall identify a failed state via physical	SYS3234
Physically		display (e.g., LED).	
Report Predicted	ATF2400	All LRUs, where possible, shall report fault	SYS3236
Failures		prediction sensor data via the M&C system.	
Failure	ATF2410	All LRUs shall report failure information in line with	SYS3237
Information		failure isolation as identified in a FMECA analysis.	
Source	· · · · ·		
Robustness	ATF2420	All ngVLA electronics designs shall be subject to a	ETR0905
Analysis		robustness analysis. Results of this analysis are a	
		required part of the design review process.	
		Robustness shall be demonstrated against	
		environmental, power supply disturbance, vibration,	
		monitor and control, inputs out-of-range.	

<i>Title</i> : Antenna Time and Frequency Technical Requirements	Owner: Shillue	Date : 2022-04-04
NRAO Doc. # : 020.30.35.00.00-0004-REQ		Version: A

7.12 Design Requirements

Parameter	Req. #	Value	Traceability
Printed	ATF3200	For printed circuit boards incorporated into ATF	ETR0701,
Circuit		subsystem design:	ETR0712,
Boards-		a) Design and manufacture shall meet the IPC	SYS2402,
Standards		Standard IPC-A-600K	SYS2803,
		b) Design and manufacture shall meet RoHS 2 and 3	SYS2805
		standards.	
Printed	ATF3210	Requirements for PCB materials, markings, and test	ETR0704-07011,
Circuit Board		and maintainability shall be met by design.	ETR0713,
Design			ETR0715-0717
Soldered	ATF3220	Soldered electrical connections shall use Class 2 of	ETRI301
Electrical		the IPC J-STD-001G Requirements for Soldered	
Connections		Electrical and Electronic Assemblies, per [AD09].	

Note: For commercial-off-the-shelf PCBs, requirements ATF3200 and ATF3220 are recommendations, with best effort to attempt to procure boards that meet as many of these requirements as possible.

Parameter	Req. #	Value	Traceability
Power Supply	ATF3300	ATF shall achieve full performance with power supply	[AD21]
Noise and		voltage stability and rms noise levels specified in ICD.	C · J
Stability			
DC Voltages	ATF3310	All ATF equipment in the ngVLA powered from DC	ETR0821,
available		voltages shall voltages produced by the PSU modules,	ETR0803
		currently + 5 VDC, +/- 7.5 VDC and +/- 17.5 VDC.	
PSU Voltage	ATF3320	Devices powered from the PSU modules shall	ETR0823
Tolerance		tolerate +/- 10% of the rated voltages.	
LRU Physical	ATF3330	LRU chassis or housing shall be electrically connected	ETR0804
Ground		to the antenna structure using a proper grounding	
		wire. This wire can be a separate ground connection	
		or included in the connectorized harness carrying	
		power to the device.	
Power Supply	ATF3340	Structural/Chassis components and signal grounds	ETR0814
Returns Separate		shall never be used as a power supply return path.	
from Ground			
Overcurrent	ATF3350	All ngVLA Electronics systems shall implement	ETR0805
Protection		overcurrent protection on LRUs.	
Overcurrent	ATF3360	The ngVLA M&C system shall be able to monitor the	ETR0806
Protection		state of overcurrent protection devices in an LRU. An	
Device		exception is if the circuit protection device activated	
Monitoring		disables the LRUs M&C interface.	
Thermal	ATF3370	ngVLA LRUs shall be thermally protected.	ETR0807
Protection			

7.12.2 Power and Ground

<i>Title</i> : Antenna Time and Frequency Technical Requirements	Owner: Shillue	Date : 2022-04-04
NRAO Doc. # : 020.30.35.00.00-0004-REQ		Version: A

Deveneeten	D	Value	Tuesekility
Parameter	Req. #		Traceability
Thermal	ATF3380	The LRU shall be able to monitor the state of thermal	ETR0808
Protection		protection features. An exception is if the thermal	
Monitoring		protection activated disables the LRUs M&C interface.	
Thermal Analysis	ATF3390	The designer shall analyze their designs and take steps	ETR0816
		to optimize thermal performance with a focus on	
		proper cooling, thermal stability and the elimination	
		of hot spots. The thermal design shall be published as	
		a report and included in design reviews.	
Power On	ATF3400	LRUs and power supplies shall contain externally	ETR0812
Indicators		visible LED power indicators with "steady blue"	
		indicating "nominal operation" and "blinking blue"	
		indicating "power is on but not meeting nominal	
		conditions." In RFI shielded enclosures, these may be	
		implemented with small LEDs or light pipes.	
Battery Use	ATF3410	Batteries shall not be used in the ngVLA system	ETR0817
		except in the case of the antenna -48 VDC power	
		system and a commercial UPS device for critical AC	
		line powered equipment.	
Transient	ATF3420	Transient Voltage Suppression devices shall be used	ETR0818
Protection of		on sensitive analog and digital I/O signals and power	
LRU I/O &		supplies entering or exiting an LRU. RF and other	
Power		signals that will be adversely affected by the inclusion	
Connections		of these devices are exempt from this requirement.	

<i>Title</i> : Antenna Time and Frequency Technical Requirements	Owner: Shillue	Date : 2022-04-04
NRAO Doc. #: 020.30.35.00.00-0004-REQ		Version: A

7.12.3 Electrical Wiring, Cables, Connectors

Parameter	Req. #	Value	Traceability
Wiring Documentation and Labeling	ATF3500	Wiring documentation and labeling shall meet project standards [AD09].	ETRIIOI, ETRIIO2
DC voltage Wire Colors	ATF3510	DC voltages shall use a wiring color scheme as specified in [AD09].	ETRI 103– ETRI 123, ETRI 154, ETRI 155
AC power wiring colors	ATF3520	All AC wiring colors shall conform to US NEC requirements.	ETRI125
Wire and Cable installation	ATF3530	Wire and cable protection, materials, ruggedness, installation, and insulation shall be implemented according to [AD09].	ETR1125– ETR1132, ETR1156, ETR1157, ETR1189
Connector Documentation and Labeling	ATF3540	Connector documentation and labeling shall meet project standards [AD09.].	ETRII33, ETRII34
Connector Selection	ATF3560	Connectors shall be selected for appropriate current rating, environmental rating, and expected number of mating cycles.	ETRII35– ETRII37
Connectors for Hot Swap	ATF3570	If hot swapping is used, the design must be supported by the selection of an appropriate connector to eliminate arcing, abnormal current flow, and sequencing issues.	ETRII39
Connector Design for Ease of Operation	ATF3580	Connectors shall be chosen for ease of operational and maintenance use. This includes: a) Use of keying to prevent incorrect mating b) Use of clear labeling and/or color coding c) Use of standardized pinouts for cables/connectors used in multiple places.	ETR1141, ETR1185, ETR1142
Crimped Connectors	ATF3590	Crimped wire connections shall be preferred over solder cup, and shall utilize best assembly practice per [AD09]	ETRI 186, ETRI 187
Connector Type, Retention, and Locking	ATF3600	Connectors must meet project standards for reliable performance by complying with retention and locking standards. This is applicable to external electronic, RF, and fiber optic connectors, single and multi-pin. Internal to LRUs, PCB board connections and other critical interconnects must be designed for positive retention. ETR1212 requires a documented analysis for satisfying this requirement.	ETRI197– ETRI212

<i>Title</i> : Antenna Time and Frequency Technical Requirements	Owner: Shillue	Date : 2022-04-04
NRAO Doc. # : 020.30.35.00.00-0004-REQ		Version: A

7.12.4 Materials, Lighting, and Mechanical

Parameter	Req. #	Value	Traceability
Metalwork	ATF3700	Metalwork used for modules, bins, and racks shall use project standard recommendations for use of	ETRI 143– ETRI 147,
		materials, plating and coating, surface preparation and painting.	ETRI 188
Lighting	ATF3710	Status lighting shall be by means of long-life LED or OLED sources. BLUE shall be used solely to indicate presence of power supply. RED shall be used solely to indicate faults or alarms conditions. WHITE shall be used only for illumination. Other colors may be used at the designer's discretion for other conditions or status indication. Brightness shall be set to the minimum necessary for the desired function.	ETRII48– ETRII53
Fasteners	ATF3720	All screws or any type of assembly hardware shall use metric standard, and materials, labeling, and design shall be according to [AD09].	ETR1161– ETR1169, ETR1171, ETR1190, ETR1184
LRUs, Mechanical	ATF3730	LRU shall be designed for ease of installation and removal, be free of rough edges, and follow project recommendations for assembly, installation, and handling per [AD09].	ETRII70, ETRII72, ETRII76– ETRII78, ETRII83
LRU Documentation & Dimensions	ATF3740	LRUs shall be documented with engineering dimensions, units and tolerances per [AD09].	ETRI 173– ETRI 175

8 Safety

8.1 Safety Requirements

This section defines all design requirements necessary to support the Level-I Safety, Security, and Cybersecurity requirements.

Parameter	Req. #	Value	Traceability
Safety	ATF4200	The ATF equipment shall comply with ngVLA Safety	SYS2700
Specification		Specifications [AD07].	
Security	ATF4210	The ATF equipment shall comply with Security Plan	SYS2703
Specification		and Requirements [AD08].	
Cybersecurity	ATF4220	The ATF shall be engineered and deployed in	SYS2702
Specification		accordance with current best practices in IT Security,	
		as defined by the NSF-funded Center for	
		Trustworthy Scientific Infrastructure and the AUI	
		Cyber Security Policy.	
Hazard Analysis	ATF4230	The ATF subsystem shall have hazard analysis	SYS2700
		performed.	
LRU Weight	ATF4240	LRUs in the ATF subsystem shall include at least one	SYS2700,
Labels		clearly visible label indicating the weight of the LRU in	SYS3202,
		pounds. The label shall be compliant with applicable	ETR0406
		standards at the time of installation.	
Hot Connect &	ATF4250	In situations where, disconnecting cables or pulling of	SYS2700,
Disconnect		equipment with power on can cause damage, clearly	SYS3202,
Warning Labels		visible labels shall be applied to warn on this	ETR0410
		condition.	
Electrical and	ATF4260	All electrical and optical safety labels shall be	ETR1016, SYS2700
Optical Label Safety Standards		compliant with applicable standards at the time of installation.	5152700
Design for	ATF4270	All LRUs using Lasers or high intensity LEDs at levels	ETRIOI8,
Optical Safety	AII 4270	defined as dangerous in the ANSI Z136 series of	SYS2700
Optical Salety		standards [RD02] shall be designed to minimize or	5152700
		prevent human exposure.	
Optical Safety	ATF4280	In all LRUs containing lasers, clearly visible labels in	ETRI019,
Labels		accordance with the IEC 60825-1:2014 Standard	SYS2700
		[RD03] shall be applied.	
Connectors for	ATF4290	If hot swapping is used, the design must be supported	ETRI 138
Hot Swap		by the selection of an appropriate connector for	
•		personnel and equipment safety.	
No Exposed Live	ATF4300	Live signal or power pins in connectors shall not be	ETRI 140
Terminals		exposed while connectors are unmated.	

NRAO Doc. #: 020.30.35.00.00-0004-REO

Date: 2022-04-04

9 Interface Requirements

Antenna Time and Frequency has interfaces with the several major subsystems as detailed in the subsections below.

9.1 Interface to IRD

[AD20] 020.10.40.05.00-0005: Interface Control Document Between: Antenna Electronics Integrated Receiver and Downconverters (IRD) *and* Antenna Time and Frequency (ATF)

This interface details the requirements for the local oscillator to support the downconversion, and the digitizer and/or digitizer reference signal, as well as any timing signal needed by IRD. Mechanical, thermal, and electronic interfaces are included.

A specific subset of these interface requirements (representing critical requirements) which will be fully defined in the ICD have been included in this document for tracking purposes and for completeness, as follows:

LO Frequency Table	ATFI205
LO Amplitude	ATFI230
LO Amplitude Stability	ATFI235
LO Phase Noise	ATFI240
Digitizer Reference Phase Noise	ATFI260
Spurious Narrowband Tones	ATFI500
Spurious Emission Impacting IRD	ATFI605

Table 4: ATF subsystem requirements tracked in ICD to IRD.

Additional interface requirements will be detailed in the ICD for connector types and mechanical and thermal interfaces.

9.2 Interface to PSU

[AD21] 020.10.40.05.00-0006 (Interface 0059): Interface Control Document Between: Antenna Electronics DC Power Supply (PSU) *and* Antenna Time and Frequency (ATF)

This interface details the requirements for DC power needed to supply ATF equipment. Mechanical, thermal, and electronic interfaces are included.

A specific subset of these interface requirements (representing critical requirements) which will be fully defined in the ICD have been included in this document for tracking purposes and for completeness, as follows:

Power Supply noise and stability	ATF3300
DC Voltages available	ATF3310
PSU Voltage Tolerance	ATF3320
LRU Physical Ground	ATF3330
Power Supply Returns Separate from Ground	ATF3340

Table 5: ATF subsystem requirements tracked in ICD to PSU.

Additional interface requirements will be detailed in the ICD for connector and wire types and mechanical and thermal interfaces.

Date: 2022-04-04

[AD22] 020.10.40.05.00-0016: Interface Control Document Between: Front End (FED) and Antenna Time and Frequency (ATF)

This interface details the requirements for any interface between Front End and ATF *not* otherwise included in the IRD, PSU, EEC, BMR, and HIL ICDs. Mechanical, thermal, and electronic interfaces are included.

9.4 Interface to WVR

[AD23] 020.10.40.05.00-0028: Interface Control Document Between: Water Vapor Radiometer (WVR) *and* Antenna Time and Frequency (ATF)

This interface details the requirements for supply of local oscillator or timing signals to the WVR. Mechanical, thermal, and electronic interfaces are included.

9.5 Interface to BMR

[AD24] 020.10.40.05.00-0040 (Interface 0065): Interface Control Document Between Antenna Electronics: Bins, Modules, Racks (BMR) *and* Antenna Time and Frequency

This interface details the requirements for any bins, modules, or racks needed for ATF equipment. Mechanical, thermal, and electronic interfaces are included. Specific requirements which will be fully defined in the ICD have been included in this document for tracking purposes and for completeness, as follows:

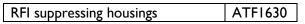


Table 6: ATF subsystem requirements tracked in ICD to PSU.

9.6 Interface to AFD

[AD25] 020.10.40.05.00-0041 (Interface 0081): Interface Control Document Between Antenna Electronics: Antenna Fiber Distribution (AFD) and Antenna Time and Frequency (ATF)

This interface details the requirements for fiber optic interfaces to the ATF equipment. Mechanical, thermal, and electronic (optical) interfaces are included.

9.7 Interface to EEC

[AD26] 020.10.40.05.00-0070: Interface Control Document between Antenna Time and Frequency (ATF) *and* Antenna Electronics Environmental Control System (EEC)

This interface details the requirements for environmental control of the ATF equipment. Mechanical, thermal (air or liquid heat transfer), and electronic interfaces are included. The interface requirement will include specific detailed requirement for the EEC subsystem for thermal control such that the environmental requirements detailed in Sections 6.6, 6.7, and 6.8 are met.

9.8 Interface to HIL

[AD27] 020.10.40.05.00-0078: Interface Control Document Between: Antenna Electronics Monitor and Control Hardware Interface Layer (HIL) *and* Antenna Time and Frequency (ATF)

This interface details the requirements for interface between the ATF equipment hardware layer and the software supervisory layer.

9.9 Interface to RTD

[AD28] 020.10.40.05.00-0125: Interface Control Document Between: LO Reference and Timing – Distribution (RTD) and Antenna Time and Frequency (ATF)

This interface details the requirements for signal, timing, and connection between the ATF and the roundtrip distribution equipment that distributes the primary time and frequency references to the antennas.

10 Technical Metrics

Technical Metrics are used throughout the project and should be monitored throughout project design and development. These parameters strongly influence the eventual effectiveness of the facility and are useful high-level metrics for trade-off decisions. Technical Performance Measures are a category of technical metrics defined at the subsystem level.

10.1 Technical Performance Measures

The Technical Performance Measures are requirements that closely impact the overall performance of the ngVLA system and are therefore considered of higher importance. The following Technical Performance Measures are identified for optimization and monitoring throughout the design phase.

Technical Performance Measures	Req. #	Traceability LI Re#
LO Phase Noise	ATFI240	SYS5001, SYS1503, CAL0314
LO Phase Drift	ATFI250	SYS5001, SYS1504, SYS1505

 Table 7: ngVLA Key Performance Parameters.

NRAO Doc. #: 020.30.35.00.00-0004-REQ

II Verification

The design will be verified to meet the requirements by analysis (A), inspection (I), a demonstration (D), or a test (T), each defined below.

Verification by Analysis: The fulfillment of the specified performance shall be demonstrated by appropriate analysis (hand calculations, finite element analysis, thermal modeling, etc.), which will be checked by the ngVLA project office during the design phase.

Verification by Inspection: The compliance of the developed system is determined by a simple inspection (of the design documentation or deliverables) or measurement.

Verification by Demonstration: The compliance of the developed feature is determined by a demonstration.

Verification by Test: The compliance of the developed subsystem with the specified performance shall be demonstrated by an acceptance test.

Multiple verification methods are allowed over the course of the design phase, although the primary (final) verification method is identified below.

11.1 Environmental Testing

The following environmental test conditions are defined:

Precision Operating Conditions: temperature range and max rate of change (POC): corresponding to requirements ATF0320, ATF0330

- Critical requirements shall be tested at the minimum, median, and maximum temperature
- Stability testing shall be conducted under temperature rate of change defined for POC

Normal Operating Conditions: temperature range and max rate of change (NOC): corresponding to requirements ATF0390, ATF0400

- Critical requirements shall be tested at the minimum, median, and maximum temperature
- Stability testing shall be conducted under temperature rate of change defined for NOC

Limit Operating Conditions (LOC): Components exposed to Limit conditions during operations shall be tested for safe operation and for not incurring residual damage. Test profiles shall include:

- Start-up sequence from off to operational at minimum temperature (ATF0410) (at least 20 cycles).
- Extended operation (60 minutes) at maximum operating temperature (ATF0410)
- Maximum rate of change of temperature (up and down) between minimum and maximum values (at least 20 cycles) (ATF0420)

Transport Conditions (Shock & Vibe) (SV):

- All LRUs that are transported shall be tested for not incurring residual damage at maximum transportation temperature over an extended period (at least 4 hours) (ATF0180)
- Prior to and after conducting SV testing, critical operational performance measures shall be tested (ATF0190, ATF0200)

11.2 Subsystem Verification Table

Req. #	Parameter/Requirement	Α		D	Т
ATFI200	LO Frequency		-		* POC, LOC, SV
ATF1205	LO Frequency Table			*	
ATFI2I0	LO Frequency Offsets				* NOC
ATF1220	Tuning				* NOC
ATF1225	LO Switching Speed				* NOC
ATF1230	LO Amplitude				* POC, LOC, SV
ATF1235	LO Amplitude Stability				* POC
ATF1240	LO Phase Noise				* POC
ATF1250	LO Phase Drift				* POC
ATF1260	Digitizer Clock Phase Noise				* POC
ATF1270	Digitizer Clock Phase Drift				* POC
ATFI300	Time Accuracy				* POC
ATFI215	LO Return to Phase				* POC
ATFI400	Standby Mode			*	
ATFI4I0	Automatic Initialization			*	
ATF1420	Operating Modes			*	
ATFI500	Spurious Narrowband Tones				* NOC
ATFI600	Spurious Signal Level Emission				* NOC
ATFI605	Spurious Emission impacting IRD				
ATFI610	Emission Verification Frequencies		*		
ATFI620	Low Frequency Emission			*	
ATFI630	Self-Monitoring				* NOC, LOC, SV
ATFI640	LRU Alerts				* NOC, LOC, SV
ATF1650	High-Cadence Monitoring			*	, ,
ATF1660	LRU Hot Swapping	*		*	
ATF1670	Remote Updates			*	
ATFI680	Automatic Configuration on Restart			*	
ATF1690	Front End Engineering Console		*		
ATF1700	M&C Commanded Reset for DC				* NOC
	Powered Devices				
ATFI7I0	M&C Commanded Reset for AC				* NOC
	Powered Devices				
ATF1800	Design Life	*			
ATF1810	Lifecycle Optimization	*			
ATF1820	Parts Selection and Procurement	*			
	Criteria				
ATF1900	Serial Numbers		*		
ATF1910	Version Control for Software and		*		
	Firmware				
ATFI920	Configuration Retrieval			*	
ATF1930	Physical Tracking		*		
ATF1940	Remote Identification			*	
ATF1950	Documentation		*		
ATF2200	Analog shielding	*	*		

<i>Title</i> : Antenna Time and Frequency Technical Requirements	Owner: Shillue	Date : 2022-04-04
NRAO Doc. # : 020.30.35.00.00-0004-REQ		Version: A

Req. #	Parameter/Requirement	Α	I	D	Т
ATF2210	Digital shielding	*	*		
ATF2220	Commercial equipment		*		
ATF2230			* NOC		
ATF2240	Electrostatic Discharge, Testing				* NOC
ATF2250	Hi-Speed Design	*			
ATF2260	ESD, Storage and Shipment		*		
ATF2300	Reliability Analysis	*			
ATF2310	Mean Time Between Failures	*			
ATF2320	Mean Time between Maintenance	*			
ATF2330	Array Element MTTR	*			
ATF2340	Modularization		*		
ATF2350	Spares Planning	*			
ATF2360	Transfer of Deliverables		*		
ATF2370	Automated Failure Reporting			*	
ATF2380	LRU Interchangeability		*		
ATF2390	Identify Failures Physically			*	
ATF2400	Report Predicted Failures			*	
ATF2410	Failure Information Source		*		
ATF2420	Robustness Analysis	*			
ATF3200	Printed Circuit Boards- Standards		*		
ATF3210	Printed Circuit Board-Design		*		
ATF3220	Soldered Electrical Connections		*		
ATF3220	LRU Power Input		*		
ATF3310	LRU Physical Ground		*		
ATF3320	Power Supply Returns Separate from		*		
A113320	Ground		-		
ATF3330	DC Voltages available		*		
ATF3340	PSU Voltage Tolerance: Test Key				* NOC
, (11.55.10	Performance Parameters over full				
	range of power supply voltages				
ATF3350	Overcurrent Protection		*		
ATF3360	Overcurrent Protection Device			*	
	Monitoring				
ATF3370	Thermal Protection		*		
ATF3380	Thermal Protection Monitoring			*	
ATF3390	Thermal Analysis	*			
ATF3400	Power On Indicators			*	
ATF3410	Battery Use		*		
ATF3420	Transient Protection		*		
ATF3500	Wiring Documentation and Labeling		*		
ATF3510	DC voltage Wire Colors		*		
ATF3520	AC power wiring colors		*		
ATF3530	Wire and Cable installation		*		
ATF3540	Connector Documentation and		*		
	Labeling				
L	· · · · · · · · · · · · · · · · · · ·	1		1 I	

<i>Title</i> : Antenna Time and Frequency Technical Requirements	Owner: Shillue	Date : 2022-04-04
NRAO Doc. # : 020.30.35.00.00-0004-REQ		Version: A

Req. #	Parameter/Requirement	Α	I	D	Т
ATF3560	Connector Selection		*		
ATF3570	Connectors for Hot Swap		*		
ATF3580	Connector Design for Ease of		*		
	Operation				
ATF3590	Crimped Connectors		*		
ATF3700	Metalwork		*		
ATF3710	Lighting		*		
ATF3720	Fasteners		*		
ATF3730	LRUs, mechanical		*		
ATF3740	LRU documentation and dimensions		*		
ATF4200	Safety Specification	*			
ATF4210	Security Specification	*			
ATF4220	Cybersecurity Specification	*			
ATF4230	Hazard Analysis	*			
ATF4240	LRU Weight Labels		*		
ATF4250	Hot Connect & Disconnect Warning		*		
	Labels				
ATF4260	Electrical and Optical Label Safety		*		
	Standards				
ATF4270	Design for Optical Safety	*			
ATF4280	Optical Safety Labels		*		
ATF4290	Connectors for Hot Swap		*		
ATF4300	No Exposed Live Terminals		*		
ATF5200	As-Built Drawings		*		
ATF5210	Operations & Maintenance Manuals		*		
ATF5220	Units		*		
ATF5230	Language		*		
ATF5240	Electronic Document Format		*		
ATF5250	Compliance Matrix		*		
ATF5260	Test Plan		*		
ATF5270	Design document		*		
ATF5280	RFI/EMC/Immunity Design report		*		
ATF5290	RAM Report		*		
ATF5300	Safety Design Report		*		
ATF5310	Reliability and Robustness Report		*		
ATF5320	LRU Documentation		*		

12 Appendix

12.1 Abbreviations and Acronyms

Acronym	Description
AD	Applicable Document
AFD	Antenna Fiber Distribution subsystem
AIV	Acceptance, Integration, and Verification
ATF	Antenna Time and Frequency
BMR	Bins, Modules, and Racks subsystem
CDR	Critical Design Review
CoDR	Conceptual Design Review
EEC	Antenna Electronics Environmental Control subsystem
EMC	Electromagnetic Compatibility
FDR	Final Design Review
FED	Front End subsystem
GHz	GigaHertz
HIL	Hardware Interface Layer
HVAC	Heating, Ventilation, and Air Conditioning
I/F	Interface
ICD	Interface Control Document
IPT	Integrated Product Team
IPT	Integrated Product Team
IRD	Integrated Receiver Digitizer
KPP	Key Performance Parameter
LED	Light Emitting Diode
LO	Local Oscillator
LRU	Line Replaceable Unit
M/C	Monitor and Control
MCL	Monitor and Control subsystem
MOE	Measure of Effectiveness
MOP	Measure of Performance
MTBF	Mean Time Between Failure
MTTM	Mean Time to Maintenance
MTTR	Mean Time to Repair
ngVLA	Next Generation Very Large Array
NRAO	National Radio Astronomy Observatory
OLED	Organic Light Emitting Diode
PDF	Portable Document Format
PDU	Power Distribution Unit
PE	Project Engineer
PSU	DC Power Supply subsystem

<i>Title</i> : Antenna Time and Frequency Technical Requirements	Owner: Shillue	Date : 2022-04-04
NRAO Doc. #: 020.30.35.00.00-0004-REQ		Version: A

Acronym	Description
RD	Reference Document
RFI	Radio Frequency Interference
RTD	LO Reference and Timing - Distribution
ТВС	To Be Confirmed
TBD	To Be Determined
TPM	Technical Performance Measure
WVR	Water Vapor Radiometer

020.30.35.00.00-0004-REQ-A-Antenna_Time_F requency_Reqs

Final Audit Report

2022-04-05

Created:	2022-04-04
By:	Anne Lear (alear@nrao.edu)
Status:	Signed
Transaction ID:	CBJCHBCAABAAph4QH-ooMGtqkrtObZyfBwWnSaxm0YHd

"020.30.35.00.00-0004-REQ-A-Antenna_Time_Frequency_Reqs " History

- Document created by Anne Lear (alear@nrao.edu) 2022-04-04 - 3:52:00 PM GMT- IP address: 75.161.210.88
- Document emailed to Bill Shillue (bshillue@nrao.edu) for signature 2022-04-04 - 3:52:48 PM GMT
- Email viewed by Bill Shillue (bshillue@nrao.edu) 2022-04-05 - 4:19:44 PM GMT- IP address: 192.131.232.128
- Document e-signed by Bill Shillue (bshillue@nrao.edu) Signature Date: 2022-04-05 - 4:20:31 PM GMT - Time Source: server- IP address: 192.131.232.128
- Document emailed to Thomas Kusel (tkusel@nrao.edu) for signature 2022-04-05 - 4:20:34 PM GMT
- Email viewed by Thomas Kusel (tkusel@nrao.edu) 2022-04-05 - 5:21:55 PM GMT- IP address: 71.62.226.171
- Document e-signed by Thomas Kusel (tkusel@nrao.edu) Signature Date: 2022-04-05 - 5:22:03 PM GMT - Time Source: server- IP address: 71.62.226.171
- Document emailed to R. Selina (rselina@nrao.edu) for signature 2022-04-05 - 5:22:05 PM GMT
- Email viewed by R. Selina (rselina@nrao.edu) 2022-04-05 - 5:31:05 PM GMT- IP address: 75.161.195.105
- Document e-signed by R. Selina (rselina@nrao.edu) Signature Date: 2022-04-05 - 5:36:56 PM GMT - Time Source: server- IP address: 75.161.195.105

- Document emailed to Willem Esterhuyse (westerhu@nrao.edu) for signature 2022-04-05 5:36:59 PM GMT
- Email viewed by Willem Esterhuyse (westerhu@nrao.edu) 2022-04-05 - 6:27:38 PM GMT- IP address: 105.225.155.85
- Document e-signed by Willem Esterhuyse (westerhu@nrao.edu) Signature Date: 2022-04-05 - 6:28:23 PM GMT - Time Source: server- IP address: 105.225.155.85
- Agreement completed.
 2022-04-05 6:28:23 PM GMT

